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Abstract

We provide the first nontrivial upper bound for the chemical distance exponent

in two-dimensional critical percolation. Specifically, we prove that the expected

length of the shortest horizontal crossing path of a box of side length n in critical

percolation on Z
2 is bounded by Cn2−δ π3(n), for some δ > 0, where π3(n) is the

“three-arm probability to distance n.” This implies that the ratio of this length to

the length of the lowest crossing is bounded by an inverse power of n with high

probability. In the case of site percolation on the triangular lattice, we obtain a

strict upper bound for the exponent of 4/3.

The proof builds on the strategy developed in our previous paper [9], but with

a new iterative scheme, and a new large deviation inequality for events in annuli

conditional on arm events, which may be of independent interest.
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1 Introduction

In this paper, we study the volume of crossing paths of a square [−n,n]2 in two-

dimensional critical Bernoulli bond percolation on Z
2. Each edge of the lattice is

declared to be open (with probability p) or closed (with probability 1− p) indepen-

dently, and in the critical case, we set p = 1/2. The minimal number of edges of

any horizontal open crossing of a box is called the chemical distance between the

left and right sides of the box. This terminology appears to have originated in the

physics literature, where the intrinsic distance in the graph defined by large critical

percolation clusters has been studied extensively [16, 18, 21, 22, 23, 24, 39]. An

early reference is [22], where the authors credit the physicist S. Alexander for intro-

ducing them to the term “chemical distance.” Let Hn be the event that there exists

a horizontal open crossing of [−n,n]2, and let Sn be the least number of edges in

any horizontal open crossing of [−n,n]2. A common assumption in this literature

is the existence of a scaling exponent dmin for the chemical distance:

(1.1) E[Sn | Hn]∼ ndmin ,

where the precise meaning of ∼ remains to be determined. Unlike for other critical

exponents in percolation, there is not even a generally accepted prediction for the

exact value of dmin. The existence and determination of an exponent for the chem-

ical distance in any two-dimensional short-range critical percolation model is thus

far out of reach of current methods. In particular, as noted by O. Schramm in [37,

Problem 3.3], the chemical distance is not likely to be accessible to SLE methods.

One reason to doubt the relevance of SLE for this problem is that the chemical

distance does not appear to be related in any simple way to conformally invariant

quantities. Apart from its mathematical appeal, further progress on the chemical

distance is a significant obstacle to analyzing random walks on low-dimensional

critical percolation clusters (the last progress being by Kesten [27] in ’86) and test-

ing the validity of the celebrated Alexander-Orbach conjecture [4].

For long-range models and certain correlated fields, on the other hand, there

has been much recent progress; see [6, 8, 14, 15], and also [13], where it is stated

that “it is a major challenge to compute the exponent on the chemical distance ...

for critical planar percolation.” For a long-range, independent percolation model

where sites x and y are connected with probability proportional to |x− y|−s, d <
s < 2d, Biskup [6] showed that the chemical distance satisfies

(1.2) distchem(x,y) = (log |x− y|)
1

log(2d/s)+o(1)

as |x− y| → ∞ through x,y in the infinite connected component. Biskup and Lin

[7] sharpened (1.2) by showing that the left side can be bounded above and below

by a constant factor times the quantity on the right, without the o(1) error in the

exponent.

In standard (nearest neighbor) Bernoulli percolation, it is known that the chemi-

cal distance in percolation clusters behaves linearly in the supercritical phase, when
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p > pc [5, 20]. Antal and Pisztora [5] show that for p > pc, there is a constant ρ
depending on p and the dimension such that

limsup
|x|→∞

1

|x|1[0 ↔ x]distchem(0,x)≤ ρ(p,d)

almost surely. Thus, the chemical distance is at most linear in the supercritical

phase. This is also true in the subcritical phase. Indeed, we have for λ ≥ 1 large

enough:

(1.3) Pp

(
distchem(x,y)≥ λ |x− y|

∣∣∣∣ x ↔ y

)
≤Ce−λc0|x−y|, p < pc

where distchem(x,y) is the chemical distance between the sites x and y in Z
d and

Pp(· | x ↔ y) denotes the Bernoulli percolation measure with density p, condi-

tioned on the event that x and y are connected by an open path. This follows

from exponential decay of the cluster volume, obtained by Aizenman-Newman [2,

Proposition 5.1]: if C(x) denotes the set of edges connected to x by open paths,

then for p < pc:

Pp(#C(x)> k)≤Ck−1/2e−ck

for k ≥ 1 and constants C,c > 0 (where c is explicit). Since #C(x)≥ distchem(x,y)
on {x ↔ y}, we obtain

Pp

(
distchem(x,y)≥ λ |x− y|

∣∣∣∣ x ↔ y

)
≤C

e−cλ |x−y|

Pp(x ↔ y)
.

On the other hand, opening all edges along a deterministic path from x to y ensures

the occurrence of {x ↔ y}, so

Pp(x ↔ y)≥ e−c′(p)|x−y|

for some c′(p)> 0. Choosing λ such that cλ ≥ 2c′(p), we obtain (1.3).

In critical percolation, connected paths are expected to be tortuous in the sense

of [1, 30]; that is, they are asymptotically of dimension > 1. In dimension d ≥ 11,

precise estimates are known [17], and macroscopic connecting paths have dimen-

sion 2. Indeed, let B(n) = [−n,n]2, x ∈ B(n)∩Z
2, and ε > 0. Denote by {0

≤εn2

↔
x in B(n)} the event that the origin is connected to x by an open path inside B(n)
with no more than εn2 edges. Then [38, Theorem 1.5, b)] states that

limsup
n→∞

∑
x∈∂B(n)∩Z2

Ppc

(
0
≤εn2

↔ x in B(n)

)
≤C

√
ε,

which implies [38, Theorem 1.6] that with high probability, any open connection

from 0 to x uses at least order |x|2 many edges. Corresponding upper bounds appear

in [31, 32] and [26, Theorem 2.8]. These estimates ultimately depend on results

obtained using the lace expansion. See [25] for a good treatment of such high-

dimensional results, as well as further references.
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In the low-dimensional, critical case, the chemical distance is not well under-

stood, even at the physics level of rigor. In [30], H. Kesten and Y. Zhang considered

the number Ln of edges in the lowest horizontal open crossing of B(n) and asked

whether Sn = o(Ln) with high probability. We answered this question affirmatively

in [9], and provided a more quantitative estimate in the note [10]. The main result

of the current paper (Theorem 1.1 below) is the first nontrivial upper bound on

dmin which, combined with those of Aizenman-Burchard [1], implies that for some

δ > 0,

(1.4) n1+δ ≤ E[Sn | Hn]≤ n−δ n2π3(n).

Here, π3(n) is the “three-arm probability to distance n,” defined in Section 3.2.

(The term n2π3(n) is the order of ELn, as shown in [34].) In site percolation on the

triangular lattice, the right side of (1.4) is bounded by n1+s for some s < 1/3, since

for that model, ELn is known to be equal to n4/3+o(1) [34, Theorem 1].

The possibility of the polynomial improvement over n2π3(n) on the right side

of (1.4) holding was mentioned in Kesten and Zhang [30]. It appears to have been

expected by experts to be correct, but there is no simple, convincing heuristic for

this expectation, and even no obvious reason to believe that there are open crossings

of different dimensions. Indeed, for large d, the chemical distance exponent is 2,

and this coincides with the exponent for the expected total number of points on all

self-avoiding open paths between two vertices that are conditioned to be connected

to each other [3].

1.1 Statement of main result

Our main result is that, conditioned on the existence of a horizontal crossing

path of B(n) = [−n,n]2, there exists with high probability a path whose volume is

smaller than that of the lowest crossing by a factor of the form n−δ , for some δ > 0.

Recall that Hn is the event that there exists a horizontal open crossing of [−n,n]2.

Let ln be the lowest open horizontal crossing. Finally, let Ln = #ln and Sn be the

least number of edges of any open horizontal crossing.

Theorem 1.1. There is a δ > 0 and a constant C > 0 such that

(1.5) E[Sn | Hn]≤Cn−δ E[Ln|Hn] for all n.

Our strategy builds on that in our previous paper [9]. The key idea introduced

in that paper was to construct local modifications around an edge e which implied

the existence of a shortcut path around e, conditionally on e ∈ ln, rather than to

attempt to construct modifications after conditioning on ln itself. The latter point

is essential; given the conditional independence of the region above the lowest

crossing, a natural idea is to try to construct shortcuts around the lowest crossing

in this “unexplored” region, conditionally on ln. This type of approach is doomed

to fail. The roughness of the lowest crossing prevents the use of the usual volume

estimates based on arm exponents, making it difficult to control the size of potential

shortcuts effectively.
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To improve on the bounds from [9], one would hope to build shortcut paths on

other shortcuts, saving length on those paths that are already shorter than portions

of the lowest crossing, in an inductive manner. The main difficulty with this ap-

proach is that it is not clear how to manipulate the shortest crossing; we only have

information on the lowest crossing. The idea at the heart of our proof is, instead of

placing shortcuts on other shortcuts, to perform an iteration on the expected lengths

of shortcuts. Roughly speaking, if one can produce paths on a certain scale which

have a savings over the lowest crossing, then on larger scales, one can build paths

using these shortcuts in places where the lowest crossing is abnormally long. This

in turn gives a larger improvement on the higher scale. The main iterative result

(for open paths in “U-shaped regions”) appears in Section 7 as Proposition 7.1, and

we quickly derive Theorem 1.1 from it in Section 8. A more detailed outline of the

proof appears in the next section.

An important tool in our proof is Theorem 4.1, in Section 4, which is a new

large deviation bound for sequences of events in disjoint annuli conditioned on

arm events. See the discussion in Step 2 of the proof sketch in the next section. We

believe this bound should be useful for other problems.

We present our argument in the case of Bernoulli percolation on Z
2. How-

ever, given that our constructions are based on Russo-Seymour-Welsh esti-

mates, the argument can be readily adapted to the triangular lattice for exam-

ple.

2 Outline of the proof

We begin by outlining the proof. In this section and the rest of the paper, given

an edge e and L > 0, B(e,L) denotes the box of side length 2L centered at the

lower-left endpoint of e; recall that B(n) = [−n,n]2. (For further notation, we refer

the reader to Section 3.) Theorem 1.1 is a consequence of an iterative bound given

in Proposition 7.1, so we sketch the idea for the latter’s proof.

This outline splits into two parts: Steps 1 – 3 summarize the construction of

shortcut paths around portions of the lowest crossing ln. These shortcuts are used

to build a path σ which improves on ln by a constant factor: it satisfies the bound

in (2.4). Steps 4 – 5 describe the iterative procedure used to make improvements

on open paths ℓk in U-shaped regions. If one can construct open paths on scale 2k

which improve on ℓk by a constant factor (see (2.6)), then for m ≥ k+C, one can

use these paths, with additional savings, to improve on ℓm by a smaller constant

factor (see (2.7)). We now proceed to a more detailed outline.

Step 1. Construction of shortcuts. Given ε > 0, and an edge e ∈ B(n), we define

an event Ek(e) depending on B(e,2K)\B(e,2k), with

(2.1) K = k+ ⌊log
1

ε
⌋,
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The form of the right side follows from a large deviation bound conditional

on a three-arm event from Section 4 (developed using tools from our recent

study of arm events in invasion percolation [11]) that allows us to roughly

decouple Ek(e) and E j(e) on the event e ∈ ln so long as |k− j| ≥ C log 1
ε .

Note that in our previous work [9], we were only able to obtain a weaker

probability bound of the form1

P(S (e) = /0 | e ∈ ln) = o(1/ logd), d → ∞.

Step 3. Construction of shorter crossing. Forming an arc σ from a maximal

collection of shortcuts and the remaining edges of ln with no shortcuts

around them, we find (a special case of equation (7.5)):

(2.4) E[#σ | Hn]≤ (ε +Cn
− cε4

log 1
ε ) ·E[#ln | Hn].

The term εE[#ln | Hn] in (2.4) is the contribution from the shortcuts, and

the term of the form n−cE[#ln | Hn] comes from estimating the expected

volume of the edges of the lowest crossing with no shortcut around them.

Step 4. Iteration in U-shaped regions: initial step. The shortcuts constructed

in Steps 1-3 are contained in “U-shaped” regions of the form shown in

Figures 2.2 and 6.1, attached to the lowest crossing.

In this iteration step, we consider candidate shortcuts contained in U-

shaped regions, and shorten them using the procedure from Steps 1-3.

To obtain even better gains, in Step 5 we will iterate this procedure, us-

ing shortcuts from one scale to reduce the length of possible shortcuts on

higher scales. Although the iteration will happen at the level of expec-

tation, the reader can think of this as “placing shortcuts on shortcuts on

shortcuts . . .”
To begin the iteration, define E ′

k to be the event that there exist a closed

and an open arc connecting two vertices contained in small boxes at oppo-

site ends of the region (see Figure 6.1 again), which is of scale 2k. (This E ′
k

is actually a version of the event Ek(e) from step 1, adapted to U-shaped

regions.) By construction, these vertices are five-arm points: they possess

five connections, two dual closed arms, and three open arms, to macro-

scopic distance. See Figure 5.3, where the five-arm points are indicated in

purple.

Denote the outermost open arc between the five-arm points by ℓk. The

path ℓk is a potential shortcut to use on the lowest crossing. To estimate its

length, one begins with an initial estimate in (7.16) (see [9, Lemma 5.2]

for a similar bound):

E[#ℓk | E ′
k]≤C22kπ3(2

k).

1 The estimate stated here does not appear in [9], but the method presented there can be quantified

to obtain it. See the note [10].
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(This is the “best possible” candidate shortcut on scale k.) By induction,

we will assume in the i-th stage of the iteration that sk is already shorter

than scale-k lowest crossings by a factor of δk(i). In other words, in Propo-

sition 7.3, at stage i, we begin with initial assumptions (see (7.3))

(2.6) E[#sk | E ′
k]≤ δk(i)2

2kπ3(2
k)

for k ≥ 1. The goal is to improve this inequality by replacing the right side

of (2.6) with a better upper bound δk(i+1)22kπ3(2
k), so long as the scale

k is large enough.

To make this improvement on (2.6), we use a version of the construc-

tion of Step 4 described in Section 7.1, modifying the outermost candidate

shortcut ℓk to build a path σ out of shortcuts and portions of ℓk. This time,

instead of saving a factor of ε (like in (2.3)), we use shortcuts that we

have already constructed in previous stages, so they obey the length bound

(2.6). Therefore their total savings over ℓk is a factor of κk(i) := ε · δk(i)
on scale k. In (7.5), we estimate the length of σ (and therefore the shortest

candidate shortcut sk) in terms of these factors κk(i).
In Proposition 7.4 of Section 7.4, we bound this right side of (7.5) to

eventually show

(2.7) E[#sk | E ′
k]≤ δk(i+1)22kπ3(2

k)

for k ≥ 1, where the parameters δk(i+1) can roughly be taken as

δk(i+1)∼C′ε1/2δk−C′′(i),

where C′ is independent of ε and C′′ has order ε−4(log 1
ε )

2. Equation

(2.7), along with these values of δk(i + 1), implies that if we move up

ε−4
(
log 1

ε

)2
scales, we accumulate an additional savings of C′ε1/2. This

is sufficient to conclude the induction for the general bound of Proposi-

tion 7.1: for k satisfying 2k ≥ (Cε−4(log 1
ε )

2)L and L ≥ 1,

E[#sk | E ′
k]≤ (C′ε1/2)L22kπ3(2

k).

The conditions on k and L now allow us to choose L = c(ε)k for some

(small) c(ε)> 0, which yields a bound of the form

(2.8) E[#sk | E ′
k]≤ 2(2−δ )kπ3(2

k).

Step 6. The estimate (2.8) gives a bound for the size of optimal shortcuts that can

be constructed around the lowest crossing on sufficiently large scales. In

Section 8, we repeat Steps 1-3, but now using these improved shortcuts

(along with portions of the lowest crossing) to improve the length of the

lowest crossing of B(n) and obtain the main result.
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3 Notations

Throughout this paper, we consider the square lattice Z
2, viewed as a graph

with edges between nearest-neighbor vertices. We denote the set of edges by E 2.

The critical bond percolation measure P is the product measure

P = ∏
e∈E 2

1

2
(δ0 +δ1)

on Ω= {0,1}E 2

, with the product sigma-algebra. For an edge e∈ E , the translation

of e = {v1,v2} by a vertex v ∈ Z
2 is

τve = {v1 + v,v2 + v}.
For ω ∈ Ω, the translation τvω is defined by

(τvω)e = ω{v1+v,v2+v}

for each edge e= {v1,v2}. For an event E ⊂Ω, we define τ−vE, the event translated

by −v, by

ω ∈ E ⇐⇒ τvω ∈ τ−vE.

A lattice path is a sequence of vertices and edges v0, e1, v1, . . ., eN , vN such that

‖vk−1 − vk‖1 = 1 and ek = {vk−1,vk}. A path is called a circuit if v0 = vN . A path

is called vertex self-avoiding if vi = v j implies i = j. A path (or circuit) is said to

be open if all its edges are open (ω(ei) = 1 for i = 1, . . . ,N). A circuit is said to be

open with k defects if all but k edges on the circuit are open.

The coordinate vectors e1, e2 are

e1 = (1,0), e2 = (0,1).

The dual lattice (Z2)∗ is

(Z2)∗ = Z
2 +

1

2
(e1 + e2).

To each edge e ∈ E 2, we associate a dual edge e∗, the edge of (E 2)∗ which shares

a midpoint with e. For a configuration ω ∈ Ω, the dual configuration ω∗ is defined

by ω∗(e∗) = ω(e). A dual path is a path made of dual vertices and edges. The

definitions of circuit, openness, and circuit with defects extend to the case of dual

paths in a straightforward way.

We will often refer to S∗ for the set S+( 1
2
, 1

2
), when S is a subset of R2, a set of

edges, or a set of vertices. In particular B(n)∗ = [−n+ 1
2
,n+ 1

2
]2.

3.1 Constants

Throughout the paper, the usual notation for the logarithm, log, is reserved for

the logaritheorem in base 2; thus in our notation

2logx := 2log2 x = x
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for all x > 0. The nonnumbered constants C,C′,c,c′, and so on, will represent

possibly different numbers from line to line.

3.2 Arm events

Events defined by the existence of connections from the center of a box to its

boundary, or between the boundaries of annuli are referred to as arm events. Below,

we denote by ∂B(n) the topological boundary of B(n) = [−n,n]2:

∂B(n) = ({n}× [−n,n])∪ ([−n,n]×{n})∪ ({−n}× [−n,n])∪ ([−n,n]×{−n}).
We make use of three main types of arm events: (polychromatic) three-arm,

five-arm, and six-arm events.

Three-arm event. The three-arm event A3(n) is defined by the following con-

nections:

(1) the edge {0,e1} is connected to ∂B(n) by two open vertex-disjoint paths,

(2) (1/2)(e1 − e2) is connected to ∂B(n)∗ by a closed dual path.

For v ∈ Z
2, A3(v,n) denotes the event A3(n) translated by v. If A3(v,n) occurs, we

say that v is a three-arm point (to distance n).

Recall that B(e,n) is the box of sidelength 2n centered at the lower-left endpoint

of e. We also consider the three-arm event centered at an edge e, characterized by

the conditions

(1) e is connected to ∂B(e,n) by two vertex-disjoint open paths,

(2) the dual edge e∗ is connected to ∂B(e,n)∗ by a closed dual path.

The probability of the three-arm event is denoted by

π3(n) := P(A3(n)).

A fact concerning π3(n) that we will use several times is the existence of a β =
1− γ < 1 such that

(3.1)
π3(2

d)

π3(2L)
≤C52β (L−d), d ≤ L,

for some C5 ≥ 1. See [9, Lemma 2.1].

For n1 < n2, we denote by A3(n1,n2) the probability that there are two vertex-

disjoint open paths inside B(n2)\B(n1) from ∂B(n1) to ∂B(n2), and a closed dual

connection inside (B(n2)\B(n1))
∗ from ∂B(n1)

∗ to ∂B(n2)
∗. We let

π3(n1,n2) := P(A3(n1,n2))

be the corresponding probability. For convenience, if n1 ≥ n2, we let A3(n1,n2)
denote the entire sample space and correspondingly set π3(n1,n2) = 1.

For a vertex v, the event A3(v,n1,n2) is the translation of A3(n1,n2) by v. For an

edge e, we define A3(e,n1,n2) := A3(w,n1,n2), where w is the lower-left endpoint

of e.
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Five-arm event. We say the origin is a five-arm point (to distance n) if:

(1) (0,0) has three vertex-disjoint (except their initial vertex 0) open paths in

B(n) emanating from 0 and reaching ∂B(n): one taking the edge {0,e1}
first, one taking the edge {0,−e1} first, and one taking the edge {0,e2}
first,

(2) there two vertex-disjoint closed dual paths inside B(n)∗ emanating from

dual neighbors of 0 and reaching ∂B(n)∗, one taking the dual edge {(−1/2)e1+
(1/2)e2,(−1/2)e1 + (3/2)e2} first, and the other taking the dual edge

{(1/2)e1 − (1/2)e2,(1/2)e1 − (3/2)e2} first.

(3) the edge {0,−e2} is closed.

We denote the event that the origin is a five-arm point to distance n by A5(n). We

say that a vertex v is a five-arm point if A5(n) occurs in the configuration translated

by −v.

For 4 ≤ n1 < n2, we let π5(n1,n2) denote the probability that there are three

vertex-disjoint open paths inside B(n2) \B(n1) from ∂B(n1) to ∂B(n2), and two

vertex-disjoint closed dual paths inside (B(n2) \ B(n1))
∗ between ∂B(n1)

∗ and

∂B(n2)
∗. The connections appear in the counterclockwise order closed, open,

open, closed, open.

We denote by

π5(n) := P(A5(n)).

Unlike the probabilities for other arm events, the exact scaling of π5(n) is known:

there is a constant C > 0, such that

(3.2) (1/C)n−2 ≤ π5(n)≤Cn−2,

see [36, Theorem 24, 3.].

Six-arm event. Let n1 < n2. We say that the six-arm event A6(n1,n2) occurs if

the following six connections occur:

(1) there are three vertex-disjoint open connections inside B(n2)\B(n1) from

∂B(n1) to ∂B(n2),
(2) there are three vertex-disjoint dual closed connections in (B(n2)\B(n1))

∗

from ∂B(n1)
∗ to ∂B(n2)

∗,

(3) the connections appear the in the counterclockwise order open, open, closed,

open, open, closed.

Applying the van den Berg-Kesten-Reimer inequality [33], the RSW theorem (see

Section 3.4 below), and using (3.2), we have

P(A6(n1,n2))≤C

(
n1

n2

)2+δ1

,

for some C,δ1 > 0.
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We also have the following lower bound for the six arm event:

(3.3) P(A6(n1,n2))≥ c

(
n1

n2

)4

.

To see why, let A3,HP(n) be the event that there are two open paths from the origin

to distance n and a dual vertex adjacent to the origin is connected to distance n

by a closed dual path, with all paths lying in the upper half-plane R× [0,∞). We

let A3,HP(n1,n2) be the event that there are two open paths connecting ∂B(n1)
to ∂B(n2) and a closed dual path connecting ∂B(n1)

∗ to ∂B(n2)
∗, with all paths

contained in R× [0,∞). The estimate (3.3) follows by quasi-multiplicativity [36,

Proposition 12.2] of arm probabilities:

P(A3,HP(n1,n2))≥ c
P(A3,HP(n2))

P(A3,HP(n1)))
,

and the universal value of the half-plane exponent [36, Theorem 24.2]

(1/C)n−2 ≤ P(A3,HP(n))≤Cn−2.

If two half-plane three-arm events occur in disjoint half-planes, then A6(n1,n2)
occurs, so:

P(A6(n1,n2))≥ cP(A3,HP(n1,n2))
2 ≥ c′(n1/n2)

4.

3.3 Characterizing the lowest crossing

Let Q= [0,m]× [0,n], where m and n are positive integers. It is well-known (see

[19, p. 317]) that, on the event that there exists an open crossing of Q, there exists

a lowest such open crossing. It is also well-known (see, for instance, [34, (1.1)]

and surrounding discussion) that planar duality allows one to simply characterize

this crossing in terms of arm events.

Consider the slightly modified rectangle Q′ = [1/2,m−1/2]× [−1/2,n+1/2].
The edge e ∈ Q is in the lowest open horizontal crossing of Q if and only if it

satisfies the following condition:

(3.4)
e is open, the two endpoints of e have disjoint open arms within Q

(one to the left side {0}× [0,n] of Q and one to the right side {m}× [0,n] of Q),

and an endpoint of e∗ has a closed dual arm within Q′ to {−1/2}× [1/2,m−1/2] .

One can use Kesten’s arm separation method (See Section 3.4) to show that

the probability that {0,e1} is in the lowest crossing of B(n) is bounded above and

below by constant multiples of π3(n), uniformly in n.

3.4 FKG and gluing

We will repeatedly use “gluing” constructions based on combinations of the

Russo-Seymour-Welsh (RSW) theorem, the generalized Fortuin-Kasteleyn-Ginibre

(FKG) inequality, and arm events to obtain lower bounds on the probability of ex-

istence large-scale open or closed connections. These methods were pioneered
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The RSW theorem is typically used along with the Harris-Fortuin-Kasteleyn-

Ginibre (Harris-FKG) inequality to “glue” paths together. For its statement, we

recall that an event A is increasing (resp. decreasing) if whenever ω ∈A and ω ′ ≥ω
coordinatewise (resp. ω ′ ≤ ω coordinatewise), then ω ′ ∈ A. The Harris-FKG

inequality states that if A and B are both increasing (or both decreasing), then P(A∩
B) ≥ P(A)P(B). The event H(ρn,n) from Proposition 3.1 is increasing, so if we

define A = H(n,n) and B to be the event that there is a vertical crossing of R(n,n),
then by the RSW theorem and the Harris-FKG inequality, P(A∩B) is bounded

away from zero independently of n. By forcing A and B to occur simultaneously

we have glued together two crossings.

In practice, we will not deal with only increasing events or only decreasing

events, so we will need the so-called generalized Fortuin-Kasteleyn-Ginibre (FKG)

inequality (see [36, Lemma 13]).

Proposition 3.2. Consider A+, B+ two increasing events, and A−, B− two decreas-

ing events. Assume there are three disjoint finite sets of edges Ã, Ã+, Ã− such that

A+, A−, B+, B− depend only on the edges in, respectively, Ã∪ Ã+, Ã∪ Ã−, Ã+ and

Ã−. Then, we have

(3.6) P(B+∩B− | A+∩A−)≥ P(B+)P(B−).

The proof of the next proposition illustrates a combination of the RSW theorem,

the generalized FKG inequality, and Kesten’s “arm separation” method to construct

connections between arms and crossings.

Proposition 3.3. Let

I = {−3n}× [−n

8
,
n

8
]⊂ ∂B(3n),

J =

(
{−3n}× [−11n

4
,−5n

2
]

)∗
.

Let A be the event that

(1) there is an open connection inside B(n) from the origin to ∂B(n),
(2) there is an open connection, disjoint from the previous one, inside [−3n,n]×

[−n
4
, n

4
] from 0 to I,

(3) there is a closed dual connection inside
(
[−3n,

n

4
]× [−11n

4
,−5n

2
]

)∗
∪
(
[−n

8
,
n

8
]× [−11n

4
,n]

)∗
,

from a dual neighbor of 0 to J.

Then, there is a constant c such that

P(A)≥ cπ3(n).

Proof. Let A+ be the event that

I there is a open connection c1 inside B(n) from (0,0) to {−n}× [− n
12
, n

12
],
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II c1 is connected inside [−5n
4
,−3n

4
]× [−n

8
, n

8
] to a vertical open crossing of

[−5n
4
,−n]× [−n

8
, n

8
].

III there is an open connection c′1, edge-disjoint from c1, inside B(n) from 0 to

∂B(n).

Similarly, let A− be the event that

I there is a closed dual connection c2 inside B(0,n)∗ from (1
2
, 1

2
), to ([− n

12
, n

12
]×

{−n})∗,

II c2 is connected inside
(
[−n

8
, n

8
]× [−5n

4
,−3n

4
]
)∗

to a horizontal closed dual

crossing of
(
[−n

8
, n

8
]× [− 5n

4
,−n]

)∗
.

The event A+∩A− is contained in A3(n), so clearly

P(A+∩A−)≤ P(A3(n)).

Kesten’s arms separation technique [29] implies that the probability of A+∩A− is

comparable to that of the three-arm event A3(n):

(3.7) P(A+∩A−)≥ cP(A3(n))

(c does not depend on n). The results stated in [29] apply to the alternating four-

arm event, but the reader can see [36, Theorem 11] for statements like inequality

(3.7) which apply to general arm events, as well as to “near-critical” percolation.

The essential point is that when A3(n) occurs, at the additional cost of a constant

factor in the probability, we can specify certain subintervals (“landing zones”) of

∂B(n) for the endpoints of the arms in arm events, and we can extend the three

arms through ∂B(n) to connect to macroscopic connections outside of B(n).

Next we attach more connections to the arms, so that they end at the intervals I

and J. We will need to use the generalized FKG inequality (instead of the standard

Harris-FKG inequality) because some not all of our events are of one type (increas-

ing or decreasing). We let B+ be the event that there is an open horizontal crossing

of [−3n,−n]× [−n
8
, n

8
], and let B− be the event that there is a closed dual hori-

zontal crossing of
(
[−3n, n

8
]× [−11n

4
,−5n

2
]
)∗

and a closed dual vertical crossing of(
[−n

8
, n

8
]× [−11n

4
,−n]

)∗
.

By construction and planarity,

A+∩A−∩B+∩B− ⊂ A,

where A is the event in the statement of the proposition. Successively applying the

generalized FKG inequality (3.6), the lower bound (3.7), and the RSW theorem

gives

P(A)≥ P(A+∩A−∩B+∩B−)≥ P(A+∩A−)P(B+)P(B−)

≥ cP(A3(n))P(B+)P(B−)

≥ c′P(A3(n)).
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To apply the generalized FKG inequality, one can choose the following regions to

be Ã, Ã+, and Ã−:

Ã = edges of B(n),

Ã+ = edges of [−3n,n]× [−n

8
,
n

8
],

Ã− = edges of [−3n,
n

8
]× [−11n

4
,−n].

�

4 Large deviation bound conditional on three arms

Our aim in this section is to give a bound on the conditional probability, given

the three-arm event A3(2
n), that only a small number of events Ek, which satisfy

the probability bound (4.1) below, occur. This result will be used later for a specific

choice of Ek (see (5.21) for the definition) in Proposition 5.6.

On A3(2
n), we want to have closed dual circuits with defects around the origin

to perform decoupling of various events. An open circuit with ℓ defects is a self-

avoiding circuit all of whose edges are open, with the exception of ℓ edges which

are closed. A closed dual circuit with defects is defined analogously. Fix an integer

N ≥ 1 and, given any k, let Ck be the event that in A(2kN ,2(k+1)N) = B(2(k+1)N) \
B(2kN), there is a closed dual circuit with two defects around the origin. Let Dk

be the event that there is an open circuit with one defect in the same annulus,

A(2kN ,2(k+1)N). We will need a large stack of these circuit events to decouple

(seven in total), and so we define this compound circuit event for k ≥ 0 as Ĉk, the

event that the following occur:

(1) for i = 1,3,4,6,8,9, the event C10k+i occurs and

(2) the event D10k occurs.

The exact definition of Ek will not be essential in this part of the paper. The

assumptions on Ek we need are that

A. Ek depends on the state of edges in A(2kN ,2(k+1)N) and

B. for some constant c̃0 > 0, one has for all n ≥ 0 and integers k with 0 ≤ k ≤
n

10N
−1,

(4.1) P

(
Bk

∣∣∣∣ A3(2
n)

)
≥ c̃0,

where

(4.2) Bk = Ĉk ∩E10k+5.

In item B, we are requesting that E10k+5 occur, but also that it be surrounded on

both sides by the total of seven defected circuits. These circuits will be needed for

the “resetting” argument.



18 M. DAMRON, J. HANSON, P. SOSOE

Define for N ≥ 1 and 0 ≤ n′ ≤ n,

In′,n =

{
j =

⌈
n′

10N

⌉
, . . . ,

⌊ n

10N

⌋
−1 : B j occurs

}
.

Note that if n−n′ ≥ 40N, then the range of j specified in In′,n is nonempty.

Theorem 4.1. There exist universal c6 > 0 and N0 > 0 such that for any N ≥ N0,

any n′,n ≥ 0 satisfying n− n′ ≥ 40N, and any events (Ek) satisfying conditions A

and B,

P

(
#In′,n ≤ c6c̃0

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ exp

(
−c6c̃0

n−n′

N

)
.

For the proof of Theorem 4.1, we first need to verify that conditional on A3(2
n),

many of the events Ĉk occur. So for 0 ≤ n′ ≤ n, we set

Jn′,n =

{
j =

⌈
n′

10N

⌉
, . . . ,

⌊ n

10N

⌋
−1 : Ĉ j occurs

}
.

Proposition 4.2. There exist c7 > 0 and N0 ≥ 1 such that for all N ≥ N0 and

n,n′ ≥ 0 with n−n′ ≥ 40N,

P

(
#Jn′,n ≤ c7

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ exp

(
−c7(n−n′)

)
.

Proof. For 0≤ n1 ≤ n2, let A3(2
n1 ,2n2) be the event that there exist three arms from

B(2n1) to ∂B(2n2): there are two open paths and one dual closed path, all disjoint,

connecting B(2n1) to ∂B(2n2). First note that

P

(
#Jn′,n ≤ c7

n−n′

N
,A3(2

n)

)
≤ P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))

×P




10⌊ n
10N ⌋−1⋂

m=10
⌈

n′
10N

⌉
A3(2

mN ,2(m+1)N), #Jn′,n ≤ c7
n−n′

N


 .(4.3)

Here we have used independence to decouple crossing events for disjoint annuli.

We now recall Menger’s Theorem from graph theory. An edge cutset for a pair

of vertices x and y in a graph G = (V,E) is a subset E ′ of E such that removing the

edges in E ′ disconnects x and y. Menger’s Theorem states that the minimal size of

any edge cutset for x and y is equal to the maximum number of edge-disjoint paths

from x and y.

By Menger’s Theorem, for any m, the event A3(2
mN ,2(m+1)N)∩ Cc

m implies

A3(2
mN ,2(m+1)N) ◦ A1(2

mN ,2(m+1)N), where ◦ indicates disjoint occurrence, and

A1(2
mN ,2(m+1)N) is the event that there is one open path from B(2mN) to ∂B(2(m+1)N).

By the RSW theorem and the van den Berg-Kesten-Reimer inequality, there is

therefore α ∈ (0,1) such that

(4.4) P(A3(2
mN ,2(m+1)N)∩Cc

m)≤ 2−αNP(A3(2
mN ,2(m+1)N)).
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Similar reasoning shows that if A3(2
mN ,2(m+1)N)∩Dc

m occurs, then there are three

arms as indicated by the A3 event, but one additional closed dual arm crossing this

annulus, and we obtain the same bound

(4.5) P(A3(2
mN ,2(m+1)N ∩Dc

m)≤ 2−αNP(A3(2
mN ,2(m+1)N)).

Using quasimultiplicativity of arm events [36, Proposition 12], independence,

(4.4), and (4.5), there is a universal C8 ≥ 1 such that for all N and all j ≥ 0,

P
(
∩9

l=0A3(2
(10 j+l)N ,2(10 j+l+1)N)∩ Ĉc

j

)

≤ ∑
0≤r≤9

r 6=0,2,5,7

P
(
∩9

l=0A3(2
(10 j+l)N ,2(10 j+l+1)N)∩Cc

10 j+r

)

+ P
(
∩9

l=0A3(2
(10 j+l)N ,2(10 j+l+1)N)∩Dc

10 j

)

= ∑
0≤r≤9

r 6=0,2,5,7





∏

0≤l≤9

l 6=r

P(A3(2
(10 j+l)N ,2(10 j+l+1)N))


P

(
A3(2

(10 j+r)N ,2(10 j+r+1)N),Cc
10 j+r

)



+

(

∏
1≤l≤9

P
(

A3(2
(10 j+l)N ,2(10 j+l+1)N

))
P
(

A3(2
10 jN ,2(10 j+1)N),Dc

10 j

)

≤ 7 ·2−αN
9

∏
l=0

P(A3(2
(10 j+l)N ,2(10 j+l+1)N))

≤ 7C9
82−αNP(A3(2

10 jN ,210( j+1)N)).

(4.6)

These observations lead us to realizing the problem as one of concentration

using independent variables. For any integer j with n′
10N

≤ j ≤ n
10N

− 1, let X j be

the indicator of the event ∩9
l=0A3(2

(10 j+l)N ,2(10 j+l+1)N)∩ Ĉc
j. Then (4.3) implies

P

(
#Jn′,n ≤ c7

n−n′

N
,A3(2

n)

)
≤ P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))

×P



⌊ n

10N ⌋−1

∑
j=
⌈

n′
10N

⌉
X j ≥

⌊ n

10N

⌋
−
⌈

n′

10N

⌉
− c7

n−n′

N


 .(4.7)

Using (4.6) and the RSW theorem, the X j’s are independent Bernoulli random

variables with parameters p j that satisfy for some β ≥ 1

(4.8) 2−βN ≤ p j ≤ 7C9
82−αNP(A3(2

10 jN ,210( j+1)N)).

So we need an elementary lemma about concentration of independent Bernoulli

random variables with suitable parameters.
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Lemma 4.3. Given ε1 ∈ (0,1) and M ≥ 1, if Y1, . . . ,YM are any independent Bernoulli

random variables with parameters p1, . . . , pM respectively satisfying pi ∈ [ε1,1] for

all i, then for all r ∈ (0,1),

P

(
M

∑
i=1

Yi ≥ rM

)
≤ (1/ε1)

M(1−r)2M
M

∏
i=1

pi.

Proof. One has

P(Y1 + · · ·+YM ≥ rM) =
M

∑
ℓ=⌈rM⌉

P(Y1 + · · ·+YM = ℓ).

Also for ℓ with ⌈rM⌉ ≤ ℓ≤ M,

P(Y1 + · · ·+YM = ℓ) = ∑
y1 ,...,yM∈{0,1}

y1+···+yM=ℓ

p
y1

1 · · · p
yM

M (1− p1)
1−y1 · · ·(1− pM)1−yM

=
M

∏
i=1

pi ∑
y1 ,...,yM∈{0,1}

y1+···+yM=ℓ

(
1− pi

pi

)1−yi

≤
(

M

ℓ

)(
1− ε1

ε1

)M−ℓ M

∏
i=1

pi

≤
(

M

ℓ

)
(1/ε1)

M(1−r)
M

∏
i=1

pi.

We sum over ℓ to obtain

P(Y1 + · · ·+YM ≥ rM)≤ (1/ε1)
M(1−r)

(
M

∑
ℓ=⌈rM⌉

(
M

ℓ

))
M

∏
i=1

pi,

from which the lemma follows. �

We now apply Lemma 4.3 to (4.7), using the bounds from (4.8), with ε1 = 2−βN .

Note that if c7 < 1/20 and n−n′ ≥ 40N, one has

⌊ n

10N

⌋
−
⌈

n′

10N

⌉
− c7

n−n′

N
≥
(⌊ n

10N

⌋
−
⌈

n′

10N

⌉)
(1−20c7).
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So if we put r = 1−20c7 (noting that r ∈ (0,1)) and use Lemma 4.3, we continue

from (4.7) to obtain

P

(
#Jn′,n ≤ c7

n−n′

N
,A3(2

n)

)

≤ P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))

× P



⌊ n

10N ⌋−1

∑
j=
⌈

n′
10N

⌉
X j ≥

(⌊ n

10N

⌋
−
⌈

n′

10N

⌉)
(1−20c7)




≤ (2βN)

(
⌊ n

10N ⌋−
⌈

n′
10N

⌉)
·20c7

2
⌊ n

10N ⌋−
⌈

n′
10N

⌉

× P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))⌊ n

10N ⌋−1

∏
j=
⌈

n′
10N

⌉
7C9

82−αNP(A3(2
10 jN ,210( j+1)N))

=
(

14C9
82(20βc7−α)N

)⌊ n
10N ⌋−

⌈
n′

10N

⌉

× P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))⌊ n

10N ⌋−1

∏
j=
⌈

n′
10N

⌉
P(A3(2

10 jN ,210( j+1)N)).

(4.9)

Again by quasimultiplicativity of arm events,

P

(
A3

(
2

10N
⌈

n′
10N

⌉))
P
(

A3

(
210N⌊ n

10N ⌋,2n
))⌊ n

10N ⌋−1

∏
j=
⌈

n′
10N

⌉
P(A3(2

10 jN ,210( j+1)N))

≤C
⌊ n

10N ⌋−
⌈

n′
10N

⌉
+1

8 P(A3(2
n)).

Use this estimate in (4.9) to find for c7 < 1/20, n−n′ ≥ 40N, and all N ≥ 1,

P

(
#Jn′,n ≤ c7

n−n′

N

∣∣∣∣ A3(2
n)

)
≤C8

(
14C10

8 2(20βc7−α)N
)⌊ n

10N ⌋−
⌈

n′
10N

⌉

≤
(

14C11
8 2(20βc7−α)N

)⌊ n
10N ⌋−

⌈
n′

10N

⌉

.

Lowering c7 so that c7 < α/(40β ), one has 20βc7 −α ≤−α/2. We also pick N0

so large that for N ≥ N0, one has 14C11
8 ≤ 2αN/4 and obtain

P

(
#Jn′,n ≤ c7

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ 2

−α N
4

(
⌊ n

10N ⌋−
⌈

n′
10N

⌉)

.
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If n−n′ ≥ 40N, then we obtain the upper bound 2−α(n−n′)/80, which completes the

proof of Proposition 4.2. �

Given the bound on the probability of existence of many decoupling circuits

from Proposition 4.2, we move to the proof of Theorem 4.1.

Proof of Theorem 4.1. For N ≥ N0 and n,n′ ≥ 0 such that n−n′ ≥ 40N, we will es-

timate #In′,n using the standard Chernoff bound along with a decoupling argument.

So estimate using Proposition 4.2, for c9 > 0 to be determined at the end of the

proof,

P

(
#In′,n ≤ c9

n−n′

N

∣∣∣∣ A3(2
n)

)

≤ exp
(
−c7(n−n′)

)
+P

(
#In′,n ≤ c9

n−n′

N
,#Jn′,n ≥ c7

n−n′

N

∣∣∣∣ A3(2
n)

)

≤ exp
(
−c7(n−n′)

)
+ exp

(
c9

n−n′

N

)
E

[
e−#In′ ,n1{#Jn′ ,n≥c7

n−n′
N

}

∣∣∣∣ A3(2
n)

]
.

(4.10)

The expectation we decompose over all possible sets Jn′,n as

(4.11) ∑
#J≥c7

n−n′
N

E

[
e−#In′ ,n

∣∣∣∣ Jn′,n = J , A3(2
n)

]
P(Jn′,n = J | A3(2

n)).

Last, we expand the expectation over a filtration. Enumerate the set J = { j1, . . . , jr0
},

where r0 ≥ c7
n−n′

N
. Then a.s. relative to the measure

P̂ := P
(
· | Jn′,n = J ,A3(2

n)
)
,

one has #In′,n = ∑
r0

s=1 1{E10 js+5}. For fixed J , define the filtration (Fs) by

Fs = σ
{

E10 j1+5, . . . ,E10 js−1+5

}
for s = 1, . . . ,r0.

(Here, F1 is trivial.) Now the expectation in (4.11) can be written using the expec-

tation Ê relative to P̂ as

(4.12) Ê

[
e
−1E10 j1+5 · · · Ê

[
e
−1E10 js−1+5 Ê

[
e
−1E10 jr0

+5

∣∣∣∣Fr0

] ∣∣∣∣Fs−1

]
· · ·
∣∣∣∣F1

]
.

For any s = 1, . . . ,r0, one has P̂-a.s.,

(4.13) Ê

[
e
−1E10 js+5

∣∣∣∣Fs

]
= 1− P̂(E10 js+5 | Fs)(1− e−1).

We bound this conditional probability uniformly over s and ω using the follow-

ing decoupling estimate.
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Lemma 4.4. There exists a universal constant c1 > 0 such that the following holds.

For any k,n ≥ 0 and N ≥ 1 satisfying

k ≤
⌊ n

10N

⌋
−1,

and any events F and G depending on the status of edges in B(210kN) and B(210(k+1)N)c

respectively, one has

(4.14) P
(
E10k+5 | Ĉk, A3(2

n), F,G
)
≥ c1P

(
E10k+5 | Ĉk, A3(2

n)
)
.

Proof. We first prove a partial version of Lemma 4.4, where we remove the condi-

tioning on F but not G: under the assumptions of Lemma 4.4, one has

(4.15) P
(
E10k+5 | Ĉk, A3(2

n), F,G
)
≥ c2P

(
E10k+5 | Ĉk, A3(2

n), G
)
.

The proof of (4.15) proceeds via decoupling using the block of circuits whose

existence is guaranteed by Ĉk. For ℓ = 1, 4, 6, 9 and an outcome in A3(2
n), let

Circℓ(C ) be the event that C is the innermost (vertex self-avoiding) closed dual

circuit with exactly two defects in A(2(10k+ℓ)N , 2(10k+ℓ+1)N). If A3(2
n) does not

occur, Circℓ(C ) is the event that C is a closed dual circuit with exactly two open

defects in A(2(10k+ℓ)N , 2(10k+ℓ+1)N), such that no other such circuit in this annulus

is contained in the union of C and its interior.

Conditioning on F can change the probabilities of the various Circ1(C ) events.

The role of the outer defected dual circuit (from C10k+4) appearing before E10k+5

is to approximately remove this bias introduced by F . We make this decoupling

explicit by breaking the intersection on the left-hand side of (4.15) into several

pieces.

Any closed dual circuit C with exactly two defects has two disjoint closed arcs

between these defects; order all defects and arcs arbitrarily and number the defects

(resp. arcs) of C according to this ordering as ei(C ) (resp. Ai(C )) for i = 1, 2.

For C a closed dual circuit with two defects in A(2(10k+1)N ,2(10k+2)N), let X−(C , i)
denote the event that

(1) Dk ∩Circ1(C ) occurs;

(2) the edge {0,e1} is connected to e1(C ) and e2(C ) in the interior of C via

vertex-disjoint open paths;

(3) 1
2
(e1 + e2) is connected to Ai(C ) via a closed dual path.

We first make the following claim, which will be useful in decomposing the

events appearing in (4.15):

(4.16)

On A3(2
n)∩ Ĉk, the event X−(C , i) occurs for exactly one choice of C and i.

We omit the proof of (4.16); the essential point is the presence of the open defected

circuit in A(210kN , 2(10k+1)N) having exactly one closed defect. This guarantees

that exactly one Ai(C ) can connect to 1
2
(e1 + e2), since any closed path from the

aforementioned defect will be confined by a pair of disjoint open paths leading to

e1(C ) and e2(C ).
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We will decompose Ĉk into inner, outer, and middle pieces; the above gives the

“inner” piece. To build the outer piece, let Ĉ+
k be the event that C10k+ℓ occurs for

ℓ = 6, 8, 9. Similarly, to the above, let D be a dual circuit in A(2(k+4)N ,2(k+5)N)
(it will eventually be taken closed with two defects) with two distinguished primal

edges {ei(D)}i=1,2 crossing it and corresponding arcs Ai(D) between them. We

define the event X+(D , j) by the following conditions:

(1) e1(D) and e2(D) are connected to ∂B(2n) in the exterior of D via disjoint

open paths;

(2) A j(D) is connected in the exterior of D to ∂B(2n) via a closed dual path;

(3) Ĉ+
k occurs.

We also need the probability of “transitions” between C and D , and it is with

these that we implement the decoupling from F . For C and D marked dual circuits

in annuli as above, let P(C , D , i, j) be the probability, conditional on the event that

each ei(C ) is open and all other edges of C are closed, that

(1) Circ4(D) occurs;

(2) there is a pair of disjoint open paths in the region between C and D con-

necting e1(C ) to one of the marked edges {e1(D), e2(D)} and e2(C ) to

the other marked edge of D ;

(3) there is a closed dual path in the region between C and D connecting

Ai(C ) to A j(D);
(4) C10k+3 occurs.

Note that, conditioning on X−(C , i) (and further conditioning on events de-

pending on the status of edges in the interior of C ), the process outside C re-

mains a free percolation. Conditioning also on X+(D , j) and on any other events

in the exterior of D leaves free percolation between C and D . We last note that if

X−(C , i)∩X+(D , j) occurs and if the defects of C and D are connected as in item

2 in the definition of P(·, ·, ·, ·), then Ai(C ) is connected in the region between

C and D to at most one of {A1(D), A2(D)}. This follows by another trapping

argument involving the open paths.

Using the observations of the above paragraph and (4.16), we see that for events

E10k+5, F, G as in the statement of the proposition:

P
(
E10k+5, Ĉk, A3(2

n), F, G
)

= ∑
C ,D , i, j

P(F, X−(C , i))P(C , D , i, j)P(E10k+5, X+(D , j), G) .(4.17)

Similarly, we can decompose

P
(
Ĉk, A3(2

n), G
)

= ∑
C ′,D ′, i′, j′

P
(

X−(C
′, i′)

)
P(C ′, D ′, i′, j′)P

(
X+(D

′, j′), G
)
,(4.18)

and analogous decompositions hold for other quantities similar to P(Ĉk, A3(2
n), G).
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To accomplish the decoupling, we use the following inequality which is adapted

from, and whose proof is essentially the same as, [12, Lemma 6.1] (see also [9,

Lemma 23]). It gives a form of comparability for the various circuit transition

factors. There exists a uniform constant C10 < ∞ such that the following holds

uniformly in k,N, as well as in choices of circuits C , C ′, D , D ′ and arc indices

i, j, i′, j′:

(4.19)
P(C , D , i, j)P(C ′, D ′, i′, j′)
P(C , D ′, i, j′)P(C ′, D , i′, j)

<C10.

To apply (4.19), multiply (4.17) and (4.18):

P
(
E10k+5, Ĉk, A3(2

n), F, G
)

P
(
Ĉk, A3(2

n), G
)

= ∑
C ,D , i, j

C ′,D ′, i′, j′

[
P
(

X−(C
′, i′)

)
P(C ′, D ′, i′, j′)P

(
X+(D

′, j′), G
)

×P(F, X−(C , i))P(C , D , i, j)P(E10k+5, X+(D , j), G)
]

(4.20)

≥C−1
10 ∑

C ,D , i, j
C ′,D ′, i′, j′

[
P
(

X−(C
′, i′)

)
P(C ′, D , i′, j)P(E10k+5, X+(D , j), G)

×P(F, X−(C , i))P(C , D ′, i, j′)P
(
X+(D

′, j′), G
)]

=C−1
10 P

(
E10k+5, A3(2

n), Ĉk, G
)

P
(
A3(2

n), Ĉk, F, G
)
.

Dividing both sides of the above by P(Ĉk,A3(2
n), G) and P

(
A3(2

n), Ĉk, F, G
)

gives

P
(
E10k+5 | A3(2

n), Ĉk, F, G
)
≥C−1

10 P
(
E10k+5 | A3(2

n), Ĉk, G
)
.

This is the claim of (4.15) with c2 =C−1
10 .

Equation (4.15) allows us to first remove the conditioning on F , and using it, we

see that to prove Lemma 4.4, it suffices to show the existence of a uniform c3 > 0

such that

(4.21) P
(
E10k+5 | Ĉk, A3(2

n), G
)
≥ c3P

(
E10k+5 | Ĉk, A3(2

n)
)
.

To show (4.21), we argue nearly identically to the proof of (4.15). The main dif-

ference is just the placement of the circuits and connections in the decoupling. We

now have to condition on the values of innermost defected circuits in A(2(k+6)N ,2(k+7)N)

and A(2(k+9)N ,2(k+10)N).

Just as before, the effect of conditioning on G is just to bias the distribution

of circuits in A(2(k+9)N ,2(k+10)N), and (4.19) shows that the inner circuit approxi-

mately removes this bias. Expanding the product

P
(
E10k+5, Ĉk, A3(2

n), G
)

P
(
Ĉk, A3(2

n)
)
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similarly to (4.20) and regrouping terms after applying (4.19), Lemma 4.4 follows.

�

Returning to the proof of Theorem 4.1, we apply Lemma 4.4 to prove the fol-

lowing statement. There exists a universal c11 > 0 such that for any N ≥ 1, any

n′,n ≥ 0 satisfying n−n′ ≥ 40N, any j =
⌈

n′
10N

⌉
, . . . ,

⌊
n

10N

⌋
−1, any F depending

on the state of edges in B(210 jN), and any J containing j,

(4.22) P(B j | F,Jn′,n = J ,A3(2
n))≥ c11P(B j | A3(2

n)).

To show (4.22), write {Jn′,n = J } as an intersection F̂ ∩ Ĉ j ∩G, where F̂ de-

pends on the state of edges in B(210 jN) and G depends on the state of edges in

B(210( j+1)N)c. Applying Lemma 4.4 using F ∩ F̂ in place of F , we obtain

P(B j | F,Jn′,n = J ,A3(2
n)) = P(E10 j+5 | F, F̂ , Ĉ j,G,A3(2

n))

≥ c1P(E10 j+5 | Ĉ j,A3(2
n))

≥ c1P(B j | A3(2
n)),

which is (4.22) with c11 = c1.

We now apply (4.22) to the probability in (4.13). For a fixed J = { j1, . . . , jr0
}

with r0 ≥C1
n−n′

N
and s = 1, . . . ,r0, let x1, . . . ,xs−1 ∈ {0,1} and put

F = {1E10 j1+5
= x1, . . . ,1E10 js−1+5

= xs−1}.

Then for ω ∈ F ∩{Jn′,n = J }∩A3(2
n), the event Ĉ js occurs, and so

P̂(E10 js+5 | Fs)(ω) = P(E10 js+5 | F,Jn′,n = J ,A3(2
n))

= P(B js | F,Jn′,n = J ,A3(2
n))

≥ c11P(B js | A3(2
n)).

Using assumption (4.1), we obtain P̂-a.s. for ω ∈ F ∩{Jn′,n = J }∩A3(2
n)

P̂(E10 js+5 | Fs)≥ c11c̃0.

Because such events generate the sigma-algebra Fs, the same inequality is valid

P̂-a.s., and so replacing this in (4.13), we have

Ê

[
e
−1E10 js+5

∣∣∣∣Fs

]
≤ 1− c11c̃0(1− e−1).

Starting with this bound for s = r0, we place it in (4.12), and then repeat for

s = r0−1, and so on, until s = 1 to obtain the overall bound for r0 = #J ≥ c7
n−n′

N

E

[
e−#In′ ,n

∣∣∣∣ Jn′,n = J ,A3(2
n)

]
≤
(
1− c11c̃0(1− e−1)

)r0

≤
(
1− c11c̃0(1− e−1)

)c7
n−n′

N .
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We sum this in (4.11) for

E

[
e−#In′ ,n1{

#Jn′ ,n≥c7
n−n′

N

}
∣∣∣∣ A3(2

n)

]

≤
(
1− c11c̃0(1− e−1)

)c7
n−n′

N P

(
Jn′,n ≥ c7

n−n′

N

∣∣∣∣ A3(2
n)

)
,

and so, returning to (4.10), we conclude that

P

(
#In′,n ≤ c9

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ e−c7(n−n′)+ ec9

n−n′
N (1− c11c̃0(1− e−1))c7

n−n′
N .

By the inequality 1− x ≤ e−x, we get the upper bound

e−c7(n−n′)+ exp

(
n−n′

N

[
c9 − c11c7c̃0(1− e−1)

])
.

We therefore choose c9 = c12c̃0, where c12 = min
{

1,c11c7(1− e−1)/2
}

to obtain

the bound

P

(
#In′,n ≤ c12c̃0

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ e−c7(n−n′)+ exp

(
−c12c̃0

n−n′

N

)
.

This implies for some universal c13 > 0,

P

(
#In′,n ≤ c13c̃0

n−n′

N

∣∣∣∣ A3(2
n)

)
≤ exp

(
−c13c̃0

n−n′

N

)
.

�

5 Definition of Ek

Suppose the event Hn that there exists a horizontal open crossing of [−n,n]2

occurs. Any vertex self-avoiding open path connecting the vertical sides of [−n,n]2

corresponds to a Jordan arc (a continuous injection of [0,1] into R
2) separating the

top side [−n,n]×{n} from the bottom side [−n,n]×{−n}. ln is the vertex self-

avoiding horizontal open crossing path such that the closed region B(ln) of [−n,n]2

below and including ln is minimal.

A fact that we will use frequently, is that an edge e is in the lowest crossing ln if

and only if (a) it is open, (b) there are two vertex-disjoint open paths connecting e

to the left and right sides of B(n), and (c) there is a closed dual path connecting e∗

to the bottom of B(n). Using this, one can show that there are constants c,C such

that if e ∈ B(n) is an edge with dist(e,∂B(n)) = d, then

(5.1) cπ3(d)π2(d,n)≤ P(e ∈ ln | Hn)≤Cπ3(d),

where πk(d,n) is the “k-arm” probability corresponding to crossings of an annulus

B(n)\B(d). This estimate was already used extensively in our previous paper [9].

See for example Section 5.3 and Lemma 17 there.
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Definition 5.1 (κ-shortcuts). Let κ ∈ (0,1). For an edge e ∈ ln, the set S (e,κ) of

κ-shortcuts around e is defined as the set of vertex self-avoiding open paths r with

vertices w0, . . . ,wM such that

(1) for i = 1, . . .M−1, wi ∈ B(n)\B(ln),
(2) the edges {w0,w0+e1}, {w0−e1,w0}, {wM,wM +e1}, and {wM −e1,wM}

are in ln and w1 = w0 + e2, wM−1 = wM + e2.

(3) writing τ for the subpath of ln from w0 to wM, τ contains e, and the path

r∪ τ is an open circuit in [−n,n]2,

(4) The points w0 +(1/2)(−e1 + e2) and wM +(1/2)(e1 + e2) are connected

by a dual closed vertex self-avoiding path c, whose first and last edges are

vertical (translates of {0,e2}), and which lies in [−n,n]2 \B(ln).
(5) M = #r ≤ κ#τ .

For 0 < ε < 1, we define the annulus

A(2k,2K) := [−2K ,2K ]2 \ [−2k,2k]2,

where

(5.2) K = k+ ⌊log
1

ε
⌋.

For δ > 0, we define an event Ek = Ek(ε,δ ) depending only on the edges in the

annulus A(2k,2K) which after translation by and edge e (see definition of Ek(e) in

the next paragraph) implies the existence of a δε-shortcut around e when e ∈ ln.

The next subsection contains a precise description of Ek. It involves a large number

of connections, and appears in equation (5.21), following Proposition 5.3. The

event is illustrated in Figures 5.1 and 5.2. We encourage the reader to study these

figures. The important features include the following:

• An open arc (shortcut), whose length is of order at most δ22kπ3(2
k), con-

necting two arms emanating from the three-arm edge e. This arc lies inside

a box of side length 3 · 2k centered at e, and is depicted as the top (solid)

arc in Figure 5.2.

• A path with length of order at least 22Kπ3(2
K), whose edges necessarily

lie on the lowest crossing if e does. This path is depicted as the solid,

“pendulous” arc intersecting the green box in Figure 5.1. This path will be

“long” and cut short by the path in the preceding item.

We denote by Ek(e) = Ek(e,ε,δ ) the event τ−ex
Ek(ε,δ ), that is, the event that

Ek occurs in the configuration (ωẽ+ex
)ẽ∈E 2 translated by the coordinates of the

lower-left endpoint ex of the edge e.

Two properties of Ek(e) which will be crucial for the rest of the proof are the

following:

(1) If Ek(e) occurs for some k and e lies on ln, then S (e,δε) 6= /0 . (See

Proposition 5.4.)
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with the following connections, in clockwise order:

(a) an open arm connected to [ 15
6
·2k, 8

3
·2k]×{ 1

3
·2k},

(b) a closed dual arm connected to [8
3
·2k, 17

6
·2k]×{1

3
·2k},

(c) an open arm connected to the “right side” of the box {3 · 2k}× [−1
3
·

2k, 1
3
·2k],

(d) a closed dual arm connected to [7
3
·2k,3 ·2k]×{− 1

3
·2k},

(e) and an open arm connected to {7
3
·2k}× [−1

3
·2k, 1

3
·2k].

We denote the unique such point in B2 by ⋆2. The vertex ⋆2 is at distance

at least (1/6) ·2k from the boundary of the box

B′
2 := [

7

3
2k,3 ·2k]× [−1

3
·2k,

1

3
·2k]⊃ B2.

(5) There is a closed dual circuit with two open defects around the origin in-

side the annulus [−5
3
2k, 5

3
2k]2 \ [−2k,2k]. One of the defects is in the box

[−5
3
2k,−2k]× [−1

3
2k, 1

3
2k], and the other is in [2k, 5

3
2k]× [−1

3
2k, 1

3
2k].

(6) There is an open vertical crossing of [−8
3
· 2k,−7

3
· 2k]× [−3 · 2k,−1

3
· 2k],

connected to the open arm that emanates from the five-arm point ⋆1 in B1

and lands in [−8
3
· 2k,−7

3
· 2k]×{−1

3
· 2k}. There is a dual closed vertical

crossing of [−3 · 2k,−8
3
· 2k]× [−3 · 2k,−1

3
· 2k], connected to the closed

dual arm that lands in [−3 ·2k,−8
3
·2k]×{− 1

3
·2k}.

(7) There is a closed dual vertical crossing of [7
3
·2k,3 ·2k]× [−3 ·2k,− 1

3
·2k],

connected to the dual arm that lands in [7
3
·2k,3 ·2k]×{−1

3
·2k}.

(8) There is a closed dual arc (the shield, in green in Figure 5.3) in the half-

annulus

(5.3) Ṽ (k) :=

[
[−17

6
·2k,

17

6
·2k]× [

−1

6
·2k,

17

6
·2k]

]
\ (−8

3
·2k,

8

3
·2k)2

connecting the closed dual paths from the two five-arm points ⋆1 and ⋆2 in

items 3 and 4.

(9) There is an open arc (the shortcut, in blue in Figure 5.3) in the region

(5.4) Ũ(k) :=

[
[−8

3
·2k,

8

3
·2k]× [−1

6
·2k,

8

3
·2k]

]
\ (−15

6
·2k,

15

6
·2k)2,

connecting the open paths from the two five-arm points in items 3 and 4

which land on the line {(x, 1
3
·2k) : x ∈ Z}.

5.2 The box [−2K,2K]2 and the large detoured path

The following connections occur in the box [−2K ,2K ]2. Refer to Figure 5.4 for

an illustration and the relevant scales.

(10) There is a closed dual arc τ around D2 in D1 \D2, where

D1 := [−3

4
2K +3 ·2k,3 ·2k]× [−7

8
2K ,−1

8
2K ].
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(13) There are two disjoint open paths contained in [− 21
32
·2K +3 ·2k,− 3

32
·2K +

3 ·2k]× [−25
32
·2K ,0]\R,

(a) one joining the endpoint of the open vertical crossing of [−8
3
·2k,− 7

3
·

2k]× [−3 ·2k,−1
3
·2k] to the left endpoint of the crossing in item 12. in

the interval {−18
32

· 2K + 3 · 2k}×
[
−49

64
·2K ,−47

64
·2K
]

on the left side

of R,

(b) one joining the endpoint of the open vertical crossing of [−7
3
·2k,− 5

3
·

2k]× [−3 ·2k,−1
3
·2k] to the right endpoint of the crossing in item 12.

in the interval {− 6
32

· 2K + 3 · 2k}×
[
−49

64
·2K ,−47

64
·2K
]

on the right

side of R.

The union of these two paths is the part of the path depicted in blue in

Figure 5.4 lying outside of R.

(14) There is dual closed vertical crossing of [−18
32

· 2K + 3 · 2k,− 6
32

· 2K + 3 ·
2k]× [−2K ,− 25

32
·2K ].

Finally, we finish the description of the event by adding two more macroscopic

conditions:

(15) There is a dual closed circuit with two open defects around the origin in

[−2K ,2K ]2 \ [− 7
8
·2K , 7

8
·2K ]2. One of the defects is contained in [−2K ,− 7

8
·

2K ]× [−2K

8
, 2K

8
], and the other in [7

8
·2K ,2K ]× [−2K

8
, 2K

8
].

(16) There are two vertex-disjoint open arms: one from the left side {−3 ·2k}×
[−3 ·2k,3 ·2k] of the box [−3 ·2k,3 ·2k]2 (touching the open arm from the

five-arm point ⋆1 that lands there) to the left side of [−2K ,2K ]2, the other

from the right side {3 · 2k}× [−3 · 2k,3 · 2k] (touching the corresponding

open arm from the five-arm point ⋆2 there) to the right side of [−2K ,2K ]2.

We denote by E ′
k = E ′

k(ε) the intersection of the events listed in items 1-16 above.

We also let E ′
k(e,ε) = τ−ex

E ′
k(ε) be the event translated by e.

By considering three-arm points in the rectangle R (defined in (5.5)), we have

the following proposition.

Proposition 5.2. On E ′
k, let NK be the number of open edges in R connected to

the open paths from item 13. by two vertex-disjoint open paths inside R which

moreover are connected inside R by a dual closed path to the dual path in item 14.

There is a constant c0 > 0 such that for ε ∈ (0,1/4) and any k ≥ 1, one has

(5.6) P({NK ≥ c022Kπ3(2
K)}∩E ′

k)≥ c0P(E ′
k).

Proof. This proof is similar to [9, Prop. 5.4]. We use the second moment method,

in the form of the Paley-Zygmund inequality:

(5.7) P(X ≥ λE[X ])≥ (1−λ )2 E[X ]2

E[X2]
.



STRICT INEQUALITY FOR CHEMICAL DISTANCE 35

We apply this inequality to the conditional probability P(· | E ′
k). We fix some λ > 0

(say 1/2), and proceed to estimate the ratio

E[NK | E ′
k]

2

E[N2
K | E ′

k]
.

We show

E[NK | E ′
k]≥ c22kπ3(2

k),(5.8)

E[NK | E ′
k]≤C

(
22kπ3(2

k)
)2
,(5.9)

for some constants independent of k.

To show (5.8), we proceed by obtaining a lower bound for the number ÑK of

points satisfying the conditions of the statement, which moreover lie in the rectan-

gle R′ ⊂ R, where

R′ =

[
−15

32
·2K +3 ·2k,− 9

32
·2K +3 ·2k

]
×
[
−49

64
·2K ,−47

64
·2K

]
.

Clearly NK ≥ ÑK . This rectangle has the same center, but half the side lengths of

R. Let E ′′
k be the event that all the connections in the description of E ′

k occur except

the horizontal crossing of R in point 13. Clearly E ′
k ⊂ E ′′

k , and by RSW and gluing,

we have

(5.10) P(E ′
k)≥ cP(E ′′

k ).

For an edge e ∈ R′, let r = r(e) = dist(e,∂R). Note that r ≤ 2K/16. Define I(e)
to be event that

(1) one of the endpoints of e is connected inside B(e,r) to the left side of

B(e,r), the other end point is connected inside B(e,r) to the right side of

B(e,r), and the dual edge e∗ has a dual closed connection in B(e,r) to the

bottom of B(e,r);
(2) the open path from e to the left side of B(e,r), denoted o1, is connected

inside R to the left side of R by a path of open edges;

(3) the open path from e to the right side of B(e,r), denoted o2, is connected

inside R to the right side R by a path of open edges;

(4) the closed dual path from e∗ to the bottom side of B(e,r), c1 is connected

inside R∗ to the bottom of R∗.

By the generalized FKG inequality (3.6) and a standard gluing construction

P(I(e))≥ cP(A3(e,r))

= cπ3(r)

≥ cπ3(2
K).

(5.11)

Let J(e) be the event that the edge e satisfies the condition in the statement of the

Proposition. Using gluing constructions to connect the open path o1 to the open
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path in 13. (a) in the definition of E ′
k, the open path o2 to the open path in 13. (b),

and c1 to the closed dual crossing in item 14. of the definition of E ′
k, we find:

P(J(e)∩E ′
k)≥ c′′P(I(e)∩E ′′

k ) (by generalized FKG)

= c′′P(I(e))P(E ′′
k ) (by independence)

≥ c′′P(I(e))P(E ′
k), (5.10).

The first inequality follows by applications of FKG, first to construct connections

between the open paths to sides of R guaranteed by E ′′
k and the open arms emanat-

ing from e in the event I(e). From this lower bound and (5.11), we have

P(J(e)∩E ′
k)≥ cπ3(2

K)P(E ′
k).

From this, we obtain

E[ÑK ,E
′
k]≥ cP(E ′

k)π3(2
K) ∑

e∈R′
1 ≥ cP(E ′

k)2
2Kπ3(2

K).

It remains to estimate the second moment of

ÑK ≤ ∑
e∈R′

1[I(e)]≤ ∑
e∈R′

1[A3(e,2
K/16)].

To do this, we use a method due to B. Nguyen [35, Section 2], writing:

E[Ñ2
K ,E

′′
k ]≤ P(E ′′

k ) ∑
e1,e2∈R′

P(A3(e1,2
K/16),A3(e2,2

K/16))

= P(E ′′
k ) ∑

e1∈R′

⌈ 3
16
·2K⌉

∑
d=1

∑
e2:|e1−e2|∞=d

P(A3(e1,2
K/16),A3(e2,2

K/16)).(5.12)

Let m = ⌊2K/16⌋. Then, by independence of variables associated to disjoint re-

gions, we have

P(A3(e1,m),A3(e2,m))≤ P(A3(e1,d/2),A3(e1,3d/2,m),A3(e2,d/2))

= π3(d/2)π3(3d/2,m)π3(d/2).

The inner sum (5.12) is estimated, uniformly in e1, by

(5.13)
⌊2m/3⌋

∑
d=1

8dπ3(d/2)π3(3d/2,m)π3(d/2)+
⌈ 3

16
·2K⌉

∑
d=⌊2m/3⌋+1

8dπ3((d∧m)/2)π3((d∧m)/2),

where a∧b := min{a,b}.

Using basic RSW theory [36, Proposition 11.1], we rescale the arguments of

the probabilities at the cost of constant factors:

π3(d/2)≤Cπ3(d),

π3(d)≤Cπ3(m), d ≥ 2m/3.

In addition, by quasi-multiplicativity [36, Proposition 12.2], we have

π3(d/2)π3(3d/2,m)≤Cπ3(m).
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Using these estimates, we find that (5.13) is bounded up to a constant by

(5.14) mπ3(m)
m

∑
d=1

π3(d)≤Cmπ3(m)2
m

∑
d=1

π3(d,m)−1,

where the inequality uses quasi-multiplicativity. To bound π3(d,m)−1 above, note

that from (3.1), there is an η > 0 such

(5.15) π3(d,m)−1 ≤C(m/d)η .

Using this upper bound, we have

(5.16)
m

∑
d=1

(m/d)η ≤Cm.

Plugging (5.16) and (5.15) into (5.14), and using (5.10) and (5.12), we obtain the

bound

E[N2
K ,E

′
k]≤ E[Ñ2

K ,E
′′
k ]

≤Cm4(π3(m))2P(E ′′
k )

≤Cm4(π3(m))2P(E ′
k).

Using (5.7) with the probability measure P(· | E ′
k), we obtain (5.6). �

On E ′
k, let sk be the minimal length open path connecting the two five-arm

points ⋆1 and ⋆2 in the U-shaped region

(5.17) U(k) :=

[
[−3 ·2k,3 ·2k]× [−1

3
·2k,3 ·2k]

]
\ (−7

3
·2k,

7

3
·2k)2.

Lemma 5.3. Let c0 be from Proposition 5.2. If for some ε ∈ (0,1/4), δ > 0 and

k ≥ 1 one has

(5.18) E[#sk | E ′
k]≤ δ22kπ3(2

k),

then

(5.19) P(#sk ≤ 2(δ/c0)2
2kπ3(2

k) | NK ≥ c022Kπ3(2
K),E ′

k)≥ 1/2.

Proof. Let N = {NK ≥ c022Kπ3(2
K)}. We have

E[#sk | N ,E ′
k]≤

E[#sk1E ′
k
]

P(N ∩E ′
k)

= E[#sk | E ′
k] ·

P(E ′
k)

P(N ∩E ′
k)
.(5.20)

By (5.6), the second factor is bounded above by 1/c0, so (5.20) is bounded by

δ

c0

22kπ3(2
k).

The result then follows by Markov’s inequality. �
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We now define the event Ek = Ek(ε,δ ) as

(5.21) Ek(ε,δ ) := {#sk ≤ 2(δ/c0)2
2kπ3(2

k)}∩{NK ≥ c022Kπ3(2
K)}∩E ′

k,

as well as the translated event Ek(e) = Ek(e,ε,δ ) as

(5.22) Ek(e,ε,δ ) := τ−ex
Ek(ε,δ ).

For e ∈ B(n), write d = dist(e,∂B(n)). The key property of Ek is the following:

Proposition 5.4. There is an ε0 such that if ε < ε0, δ > 0, and k satisfies 1 ≤ k ≤
logd −⌊log 1

ε ⌋, the occurrence of

{e ∈ ln}∩Ek(e,ε,δ )

implies that there is an εδ -shortcut around e, i.e. S (e,κ) 6= /0 for κ = ε ·δ .

Proof. We first claim:

(5.23) On Ek(e,ε,δ ), there is a κ-shortcut around e.

We have included a proof in Appendix A. See also [9, Sections 4.5 and 7] for a

detailed proof of a similar claim. The event Ek there is defined differently, but the

arguments remain essentially the same.

For the path r, we choose a path in τex
U(k) with length less than 2(δ/c0)2

2kπ3(2
k)

between the two five-arm points in items 3. and 4. of the definition of E ′
k above.

On the other hand because the edges found in Proposition 5.2 are on the lowest

crossing, the portion τ of ln containing e between the two five-arm points has total

volume greater than or equal to

NK ≥ c022Kπ3(2
K).

Thus,

(5.24)
#r

#τ
≤ δ

(2/c0)2
2kπ3(2

k)

c022Kπ3(2K)
.

Using (3.1), we have

22kπ3(2
k)

22Kπ3(2K)
≤C52(2−β )(k−K) ≤ 2C522−β ε2−β ,

where C5 ≥ 1 is a constant, and β = 1− γ , for γ > 0. If

(5.25) εγ < min

{
c2

0

8C522−β
,1/4γ

}
,

then we find

(5.26) #r < (εδ ) ·#τ.

�

The following proposition gives a lower bound for the probability of Ek(e,ε,δ ):
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Proposition 5.5. There is a constant c2 > 0 such that for all ε ∈ (0,1/4) and k ≥ 1,

(5.27) P(E ′
k)≥ c2ε4.

In particular, by (5.6), if (5.18) holds for some ε ∈ (0,1/2), δ > 0, and k ≥ 1, then

(5.28) P(Ek(e,ε,δ ))≥
c0c2

2
ε4.

Proof. The second inequality is a combination of (5.6), (5.19) and (5.27).

For the first inequality, we apply the RSW and the generalized FKG inequal-

ities and gluing constructions to build all the connections in the definition of E ′
k.

See Section 3.4 for a description of the methodology. Although the definition of

E ′
k is quite long and complicated, the probability that each of its 16 items occurs

(individually) can be bounded below, and so the generalized FKG inequality allows

us to glue all connections together (force them to occur simultaneously) with the

lower bound given in (5.27).

We now list the individual lower bounds. The majority of the connections de-

scribed in the definition of E ′
k in Sections 5.1 and 5.2 are constructed from inter-

locking crossings or closed dual crossings of rectangles with fixed aspect ratio. By

the RSW theorem (3.5), each of these particular items has probability bounded be-

low independently of k and ε . The only connections in Sections 5.1, 5.2 whose

probability cannot be bounded below simply by using RSW are the ones given

below.

(1) The construction of the five-arm points in items 3. and 4. For these, we

use the lower bound (3.2)

P(A5(n))≥ cn−2,

where A5(n) is the event that there is a polychromatic five-arm sequence

from 0 to distance n (see the definition at the beginning of Section 5.1).

For item 3., say, we consider any vertex v ∈ B1 and let I(v) be the event

that v has the properties listed in that item (which is to say that v = ⋆1). By

Kesten’s arm separation method, the probability of I(v) is comparable to

the five-arm probability to distance 2k; that is, P(I(v)) is bounded above

and below by constants times π5(2
k). Therefore one has

E ∑
v∈B1

1I(v) ≥ π5(2
k) · (volume of B1),

which is bounded away from 0. Since there can be at most one point ⋆1 in

B1, the sum takes value 0 or 1; therefore, the left side equals P(∑v∈B1
1I(v)=

1). We conclude that

P(events in items 3. and 4.)≥ c > 0.

(2) The construction of circuits with defects from items 5. and 15. Note that

the defected edges in these circuits are four-arm edges: they have two dual

closed arms and two open arms ending on the boundary of boxes indicated
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in these items (where the defects lie). To show that the events described

in these items have probability bounded away from zero, by a gluing con-

struction and the RSW theorem, it suffices to show that there exist four-arm

edges in these boxes with probability bounded away from zero.

The probability that there exists such a four-arm edge in, say, the left

box of item 5. (the box [−5
3
2k,−2k]× [− 1

3
2k, 1

3
2k]) can be bounded below

as follows. By the RSW theorem, the probability that there is an open

horizontal crossing of this box is bounded away from zero and one. By the

van den Berg-Kesten inequality, one has

P(there are two such disjoint crossings)≤ P(there is at least one such crossing)2.

Therefore with probability bounded away from zero, there is one crossing,

but one cannot find two disjoint crossings. On this event, there must be

a “pivotal” edge: an edge which is open, but if it were made to be closed

(without changing the status of any other edge), there would be no open

crossing. By planar duality, such an edge is a four-arm edge. We conclude

that

P(events in items 5. and 15.)≥ c > 0.

(3) 6 arms (two dual closed and four open) from ∂B(3 · 2k) and ∂B(2K/16),
corresponding to the connections in items 11., 13. and 16. in Section 5.2.

These are the following six paths shown in Figure 5.4: the solid (open)

paths connecting the central box to the sides of the figure, the red dotted

(closed dual) paths connecting the central box around the bottom box, and

the blue solid (open) paths connecting the central box to the interior of the

lower box. By Kesten’s arm separation techniques, and a gluing argument,

the probability of the existence of such arms is at least the probability that

there are six arms in the counterclockwise order open, open, closed, open,

open, closed which connect B(3 ·2k) to ∂B(1
8
2K). In other words,

P(events in items 11,13,16)≥ cP(A6(3 ·2k,
1

8
2K)).

Combining the above three cases (with the constant lower bound for the prob-

abilities of all other items listed in the definition of E ′
k) with a gluing argument as

mentioned in the beginning of this proof, we use (3.3) to finish with

P(E ′
k)≥ cP(A6(3 ·2k,

1

8
2K))≥ c

(
3 ·2k

1
8
2K

)4

≥ cε4.

�

Since Ek(e,ε,δ ) implies in particular the existence of 3 disjoint connections (2

open, one closed) between ∂B(e,2k) and ∂B(e,2K), by a straightforward gluing ar-

gument (see [9, Section 5.5]), we pass from the lower bound (5.28) to the following
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conditional bound. There is c4 > 0 such that if (5.18) holds for some ε ∈ (0,1/2),
δ > 0, and k ≥ 1, then for all L ≥ 1,

(5.29) P(Ek(e,ε,δ ) | A3(e,2
L))≥ c4ε4.

Proposition 5.6. There is a constant ĉ such that if δ j > 0, j = 1, . . . ,L is a sequence

of parameters such that for some ε ∈ (0,1/4),

(5.30) E[#s j | E ′
j]≤ δ j2

2 jπ3(2
j),

then for any, L′ < L,

(5.31) P(∩L
j=L′E j(e,ε,δ j)

c | A3(e,2
L))≤ 2

−ĉ ε4

log 1
ε
(L−L′)

.

Proof. Putting E j = E j(e,ε,δ j), we have by (5.29),

P(E j | A3(e,2
L))≥ c4ε4, j,L ≥ 1.

Furthermore, using the notation of Theorem 4.1, straightforward gluing construc-

tions can be used to show that, by possibly lowering c4, one has

P(E10 j+5, Ĉ j | A3(e,2
L))≥ c4ε4, for 0 ≤ j ≤ L

10N
−1,

where N = ⌊log 1
ε ⌋, and Ĉ j is defined in the first paragraph of Section 4. We then

use Theorem 4.1 with N as above, and c̃0 = c4ε4 to find a constant c5 > 0 such that

for L−L′ ≥ 40⌊log 1
ε ⌋, we have

P(∩L
j=L′E

c
j | A3(e,2

L))≤ 2
−c5ε4 L−L′

log 1
ε

By possibly decreasing c5 to handle L′ with L′ ≥ L−40⌊log 1
ε ⌋, this implies (5.31).

�

6 U-shaped regions

Let ε ∈ (0,1/2) and recall e1 = (1,0). On the event Ek({0,e1},ε), in the box

[−3 ·2k,3 ·2k]2 (see Figure 6.1), the U-shaped region

U(k) =

[
[−3 ·2k,3 ·2k]× [−1

3
·2k,3 ·2k]

]
\ (−7

3
·2k,

7

3
·2k)2,

contains an open arc on scale 2k, joining two five-arm points ⋆1 ∈ B1 and ⋆2 ∈ B2.

This arc is contained in the smaller region

Ũ(k)∪Ṽ (k)⊂U(k)

defined in (5.4).

Recall that we denote by sk an arc in U(k) connecting the two five-arm points

with the minimal number of edges.
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Proof. We treat the case e ∈ B1. The remaining cases are similar or simpler. See

Figure 6.2 for an illustration.

For x1 ∈ B1, x2 ∈ B2, write

(6.5) P(E | E ′
k,e ∈ ℓk,⋆i = xi, i = 1,2) =

P(E ∩E ′
k,e ∈ ℓk,⋆i = xi, i = 1,2)

P(E ′
k,e ∈ ℓk,⋆i = xi, i = 1,2)

.

We now decompose the events in the numerator and denominator into many smaller

subevents representing connections that can be glued together. First, to decompose

the event {e ∈ ℓk,⋆1 = x1} we give the following events depending on edges in B′
1:

(1) the event A3(e,d) (the existence of three arms from e to distance d — this

is because e ∈ ℓk),

(2) the event A5(x1,d) (the existence of five arms from x1 to distance d — this

is because ⋆1 = x1),

(3) five arms from ∂B(x1,6d) (appearing in blue in Figure 6.2) to ∂B′
1, with the

extremities of the arms lying in the intervals as prescribed in the definition

of E ′
k. This is again because ⋆1 = x1. We denote the event described in this

item by Ã5(x1,d,2
k).

To represent the portion of the event E ′
k which does not involve ⋆1, we let Ẽk be the

event that the connections described in items 1., 2., and 4.-16. of E ′
k occur. (Strictly

speaking, in some of these items we need to eliminate reference to arms coming

from ⋆1. For example, in item 6., we do not require that the crossings connect to

any arms.)

In total, we find by independence of the status of edges in disjoint regions,

P(E ∩E ′
k,e ∈ ℓk,⋆i = xi, i = 1,2)

≤ P(E ∩A3(e,d)∩A5(x1,d)∩ Ã5(x1,d,2
k)∩ Ẽk,⋆2 = x2)

= P(E ∩A3(e,d))P(A5(x1,d))P(Ã5(x1,d,2
k))P(Ẽk,⋆2 = x2).

This is our upper bound for the numerator in (6.5).

For the denominator in (6.5), we use gluing and the generalized FKG inequal-

ity. On the event A3(e,d) ∩ A5(x1,d) ∩ Ã5(x1,d,2
k) ∩ Ẽk ∩ {⋆2 = x2}, we can

glue connections together with the generalized FKG inequality to force the event

E ′
k ∩{e ∈ ℓk,⋆i = xi, i = 1,2} to occur. The reader may wish to consult Figure 6.2.

For example, if A5(x1,d)∩A3(e,d)∩ Ã5(x1,d,2
k) occurs, then we may glue the

three arms from A3(e,d) together with the five arms from A5(x1,d) and the five

arms from Ã5(x1,d,2
k) so that (a) the five arms from A5(x1,d) connect directly

to the five arms from Ã5(x1,d,2
k), (b) the two open arms from A3(e,d) coincide

with segments of an open arm from A5(x1,d), and (c) the closed arm from A3(e,d)
connects to a closed arm from the five continued arms. We then use Kesten’s arm

separation technique to ensure that the five arms land on the boundary of B′
1 in the

areas described in item 3. of the definition of E ′
k and two of the five arms reaching
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�

7 Iteration

Our goal in this section is to derive the following proposition, which we use in

Section 8 to prove the main result, Theorem 1.1:

Proposition 7.1. There exist constants C,C′ such that for any ε > 0 sufficiently

small, L ≥ 1, and 2k ≥ (Cε−4(log 1
ε )

2)L, we have

(7.1) E[#sk | E ′
k]≤ (C′ε1/2)L22kπ3(2

k).

The proof of Proposition 7.1 is split into four sections. In Section 7.1, we

construct a family of candidate paths (σ(i))i≥1 = (σ(i,k))i≥1 between the five-arm

points in U(k) using lower-scale optimal paths and give the central iterative bound

on their lengths in Proposition 7.3. In the remaining sections, we estimate the right

side of this inequality: in Section 7.2, we present basic inequalities and choices of

parameters, in Section 7.3, we give the bound in the case i = 0, and in Section 7.4,

we give the general case, i ≥ 1.

7.1 Construction and estimation of shorter arcs

Proposition 7.1 follows from an iterative procedure wherein improvements on

the outermost arc ℓk in U(k) (which is actually in the smaller region Ũ(k)∪ Ṽ (k))
are made on larger and larger scales. The best improvement so far on scale l is de-

scribed by a sequence of parameters κl(i), l, i = 1,2, . . ., nonincreasing in l, where

i denotes the number of the current iteration in the argument. All definitions in

this section will depend on the number of iterations so far, which we will call the

generation i. The following is a key definition. It should be compared to Definition

5.1, where the shortcuts were constructed around the lowest crossing ln of the box

B(n). Here the shortcuts are constructed around ℓk in the region U(k) (see Section

6).

Definition 7.2. We say r is a size l shortcut in generation i if

(1) r is an κl(i)-shortcut in the sense of Definition 5.1. In particular, the “gain

factor” #r/#τ is ≤ κl(i), where τ is the detoured part;

(2) the shortcut r is contained in a box of side length 3 ·2l;

(3) the detoured part τ is contained in a box B ⊂U(k), with the same center as

the box in the previous item, of side length 2log 1
ε 2l , has ℓ∞-diameter greater

than 2
3
2log 1

ε 2l , and

(7.2) dist(τ,{⋆1,⋆2})≥
1

8
2log 1

ε 2l.

Eventually, the gain factor will have the form κl(i) = εcmin{i,c′l}. We note that

if ε is sufficiently small, the largest possible size of shortcut is no larger than k+
1. Furthermore, distinct shortcuts (regardless of their sizes) are either nested or
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disjoint. By nested, we mean that the region enclosed by the union of a shortcut

and its detoured section of ℓk surrounds that of another shortcut. Both of these

statements follow from the presence of “shielding” paths in item 4 of Definition

5.1. (See [9, Prop. 2.3].) Last, the definition of size l shortcuts is designed so that

if e ∈ ℓk and if El(e,ε,κl(i)/ε) occurs for an l such that (a) B(e,2l+⌊log 1
ε ⌋)⊂U(k)

(which holds for l ≤ k−3− log 1
ε by (6.1)) and (b) B(e,2l+⌊log 1

ε ⌋) does not contain

the five-arm points ⋆i, then there is a size l shortcut in generation i around e. This

follows from the analogue of Proposition 5.4 for U-shaped regions (which gives

item 1 above) and the construction of events Ek in the previous sections (the red

box in Figure 5.1 for item 2 and the larger box from that figure and the existence

of three-arm points in the rectangle R in (5.5) for item 3.)

Construction. Given the occurrence of E ′
k, we define an arc σ = σ(i) joining

the two five-arm points in U(k) as follows. For each l = k+ 1,k, . . . ,1 in order,

choose a maximal collection of (generation i) shortcuts of size l, in the following

way. First, we select a collection of size k+ 1 shortcuts such that no two of their

detoured paths share vertices and the total length of the detoured sections of ℓk is

maximal. The remaining uncovered portion of ℓk splits into a union of disjoint

segments. For each such segment, we select a collection of size k shortcuts such

that no two of their detoured paths share vertices and the total length of the detoured

sections of the segment is maximal. Continuing this way down to size 1 shortcuts,

we obtain our maximal collection of shortcuts. Next we form the arc σ consisting

of the union of these shortcuts, and all the segments of ℓk which are not covered

by this collection. It can be argued similarly to [9, Lemma 2.4] that what results

from the preceding construction is an open arc between the two five-arm points.

Since the shortcuts are either nested or disjoint, this construction has the following

essential property:

Claim 1. Given any edge e of the outermost arc ℓk of U(k), if, after applying the

above construction, the new arc σ does not include a shortcut around e of any size

l = k+1,k, . . . ,r−1, then there is no shortcut of any size k+1,k, . . . ,r−1 around

e at all.

Proof. Suppose σ does not include a shortcut around e of any size l = k+1,k, . . . ,r−
1. Then for any such l, e must be on a segment πl of ℓk that is uncovered after we

place size l shortcuts of ℓk, and πl ⊂ πl+1 for all l, where we write πk+2 = ℓk.

If there is a shortcut r of size l′ (not contained in σ ) around e for some l′ =
k+ 1,k, . . . ,r− 1, then note that r must have both of its endpoints on πl′+1. This

is trivial if πl′+1 = ℓk; otherwise, the segment πl′+1 has endpoints which are start-

ing vertices of shortcuts r1, r2 of sizes ≥ l′+ 1. (If one endpoint of πl′+1 is one

of the five-arm points ⋆i, we only get one such shortcut r1.) Because shortcuts

are nested, if r has an endpoint on ℓk \πl′+1, then the detoured path τi of some ri

would be contained in the detoured path τ of r. However, this is impossible by size
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considerations:

2

3
2log 1

ε 2l′+1 ≤ diam τi ≤ diam τ ≤ 2log 1
ε 2l′ .

Therefore r has both endpoints on πl′+1. Because πl′+1 is uncovered when we add

size l′ shortcuts, and all such shortcuts are disjoint, maximality dictates that we

must add r, or another shortcut of size l′ that covers e, to σ . This is a contradiction.

�

From Claim 1, we see that if the new arc σ contains a shortcut around e of size

l, then there is no shortcut of any size l+1, . . . ,k+1 around e at all. Indeed, e must

have been on an uncovered segment directly before we added shortcuts of size l,

and is therefore not covered by a shortcut in σ of any size l +1, . . . ,k+1.

The following proposition is the main iterative bound of the paper.

Proposition 7.3. Let ε > 0 and fix i ∈ N. Suppose moreover that, for some nonin-

creasing sequence of parameters δl(i), l ≥ 1, we have

(7.3) E[#sl | E ′
l ]≤ δl(i)2

2lπ3(2
l).

Let

κl(i) :=

{
ε ·δl(i) if l ≥ 1

1 if l ≤ 0,

and σ = σ(i) be defined as above, in terms of the sequence κl(i), in the region Uk

for some k ≥ 1. For d = 0, . . . ,k+1, let M > 0 and d1 = d1(d) be given as

(7.4) d1 = d −Mε−4

(
log

1

ε

)2

.

There are positive constants c∗ and C2 with C2 ≥ 1 such that for any ε sufficiently

small, any M > 0 and i ∈ N, any parameters δl(i) as above, and any k ≥ 1,

E[#sk | E ′
k]≤ E[#σ(i) | E ′

k]

≤C2

k+1

∑
d=0

22dπ3(2
d) ·
(
2−η(ε)d +

d1

∑
s=1

2−η(ε)(d−s)κs(i)+κd1
(i)
)
,(7.5)

where

(7.6) η(ε) :=
c∗ε4

log 1
ε

.

Proof. The first inequality follows because ℓk is in Ũ(k)∪ Ṽ (k)⊂U(k) and all its

shortcuts are constructed in boxes in U(k), so σ remains in U(k). To estimate

the length of σ , we begin by dividing the outermost arc ℓk, given σ , into a finite

number of segments σ̂ℓ, ℓ= 1, . . ., where each segment σ̂ℓ is either

(1) a single edge of the outermost arc also belonging to σ , or
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(2) a segment of the outermost arc which is detoured by a connected sub-

segment of σ . That is, σ̂ℓ is the part of the outermost arc detoured by a

shortcut σℓ in σ .

To each shortcut σℓ, we can associate a “gain factor” gf(σℓ), which is 1 if σℓ is an

edge of the outermost arc, and #σℓ/#σ̂ℓ otherwise.

By definition of σ , we have

#σ = ∑
ℓ

#σ̂ℓ×gf(σℓ).

For a fixed generation i (initially i = 1), we organize this sum according to the size

of the shortcut σℓ (we say the size is 0 if there is no shortcut, in which case the gain

factor is 1):

#σ =
k+1

∑
s=0

∑
ℓ:size(σℓ)=s

#σ̂ℓ×gf(σℓ).

Note that for large values of s, many of the summands will be zero because there

cannot exist shortcuts of such sizes. Nevertheless, the bound holds as stated.

The event E ′
k is partitioned into the events:

F(x1,x2) := {⋆1 = x1,⋆2 = x2}, x1 ∈ B1,x2 ∈ B2.

Note that F(x,y)∩F(x′,y′) = /0 on the event E ′
k unless x = x′ and y = y′. Thus, we

have

#σ ≤ ∑
x1∈B1,x2∈B2

1F(x1,x2)

k+1

∑
s=0

∑
ℓ:size(σℓ)=s

#σ̂ℓ ·κs(i).

Next we divide the region U(k) according to the distance d to the points x1, x2,

obtaining, for

Ad = Ad(x1,x2) = {e ∈U(k) : 2d ≤ dist(e,x1)≤ 2d+1 or 2d ≤ dist(e,x2)≤ 2d+1},
(and A0 = {dist(e,x1)≤ 1 or dist(e,x2)≤ 1}) the decomposition

#σ ≤ ∑
x1∈B1,x2∈B2

1F(x1,x2)

k+1

∑
d=0

d0

∑
s=0

∑
ℓ:size(σℓ)=s

#(σ̂ℓ∩Ad) ·κs(i).

Here d0 = d0(d) = max(d +4− log 1
ε ,0). We do not need to consider larger sizes

since they cannot occur at such distances by the condition (7.2).

By the remark following Claim 1, if a shortcut σℓ surrounds an edge e and has

size s < k+1, then there is no shortcut of any size l = k+1, . . . ,s+1 around e at

all, so

(7.7) #σ ≤ ∑
x1∈B1,x2∈B2

1F(x1,x2)

k+1

∑
d=0

(
d1

∑
s=0

#(Bs ∩Ad) ·κs(i)+#(ℓk ∩Ad) ·κd1
(i)

)
,

where Bs = Bs(κs(i)) is the set of edges on ℓk with no generation i shortcuts of

sizes l = k+ 1,k, . . . ,s+ 1. We have used monotonicity of δℓ(i) in ℓ. (Recall that

κd1
= 1 for d ≤ Mε−4

(
log 1

ε

)2
).
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From Propositions 5.6 (for which we use the assumed bounds (7.3)) and 6.2,

and the fact that events El(e) (see (5.22)) for l such that the box B(e,2l+⌊log 1
ε ⌋) ⊂

U(k) does not contain the five-arm points ⋆i guarantee the existence of size l short-

cuts (see the discussion below Definition 7.2), we have

P(e ∈ Bs | E ′
k,e ∈ ℓk,F(x1,x2))≤ P(∩d−log 1

ε −10

l=s+1 El(e,ε,δl(i))
c | E ′

k,e ∈ ℓk,F(x1,x2))

≤CP(∩d−log 1
ε −10

l=s+1 El(e,ε,δl(i))
c | A3(e,2

d))

≤C2
− c∗ε4

log 1
ε
(d−s)

.

(7.8)

whenever e ∈ Ad . From (7.8) and (7.7), we have the following estimate for the size

of σ :

E[#σ(i) | E ′
k]

≤
k+1

∑
d=0

∑
x1∈B1,x2∈B2

P(F(x1,x2) | E ′
k)

×
[ d1

∑
s=0

κs(i) ∑
e∈Ad

P(e ∈ Bs | E ′
k,F(x1,x2),e ∈ ℓk)P(e ∈ ℓk | E ′

k,F(x1,x2))

+κd1
(i) ∑

e∈Ad

P(e ∈ ℓk | E ′
k,F(x1,x2))

]

≤C2

k+1

∑
d=0

22dπ3(2
d)(2−η(ε)d +

d1

∑
s=1

2−η(ε)(d−s)κs(i)+κd1
(i)).

(7.9)

In passing to the final line of (7.9), we have used the estimate

P(e ∈ ℓk | E ′
k,F(x1,x2))≤Cπ3(2

d),

for e ∈ Ad , where C is some constant independent of the parameters (in particular,

of the xi’s). This is the analogue (for ℓk instead of the lowest crossing ln) of the

upper bound in estimate (5.1). That the conditioning on E ′
k and F(x1,x2) results

only in an additional constant factor is shown by a gluing construction very similar

to the one illustrated in Figure 6.2. �

7.2 Some definitions

In estimating the volume of the new path σ(i), i ≥ 1, using (7.9), it is impor-

tant to track the dependence on ε when performing the requisite summations. We

begin by introducing some notations and simple bounds we will use repeatedly in

Sections 7.3 and 7.4.

We first take ε > 0 sufficiently small that Proposition 7.3 holds. We will need

ε to be possibly even smaller, and will state this at various points in what follows.
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A key point is that the size of ε always depends on fixed parameters, and never on

k nor on the generation i.

We define

m = Mε−4(log
1

ε
)2,

with M as in (7.4). To simplify notation, we will assume ε , M are taken so that m

is an integer. With this notation we have d1 = d −m.

Recall the definition of η(ε) in (7.6) and the constant c∗ appearing in the state-

ment of Proposition 7.3. We have

η(ε)m = c∗M log
1

ε
.

For l ≥ 1, set

(7.10) sl = 3ml = 3Ml · ε−4

(
log

1

ε

)2

, l ≥ 1,

with s0 = 0.

We define

θ(ε) =
2η(ε)

2η(ε)−1
≤ 2

2η(ε)−1
,

where the inequality holds if ε is sufficiently small. We choose M such that

(7.11) M > max(1,7/c∗).

Since

(7.12) 2
c∗

log 1
ε

ε4

−1 ≥ c∗
ln2

log 1
ε

ε4,

we have

(7.13)
εMc∗

2
c∗ε4

log 1
ε −1

≤ log 1
ε

c∗ ln2
ε3.

We will always choose ε = ε(c∗) so small that the quantity in (7.13) is less than

2ε2:

(7.14) θ(ε)εc∗M ≤ ε2.

The constant C3 ≥ 1 is chosen such that for all L ≥ 1 and any α ≤ 1,

L+1

∑
d=0

22dπ3(2
d)2−αd = π3(2

L)
L+1

∑
d=0

π3(2
d)

π3(2L)
2(2−α)d

≤C5π3(2
L)2βL 2(L+2)(2−β−α)−1

22−β−α −1

≤C32(2−α)Lπ3(2
L).

(7.15)

Here 0 < β < 1 was introduced in (3.1).
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7.3 Improvement by iteration

We use Propostion 7.3 inductively to obtain improvements on our estimates for

#sk, starting from the initial estimate

(7.16) E[#sk | E ′
k]≤C122kπ3(2

k),

for some C1 ≥ 1. The inductive step is presented in Proposition 7.4 in Section

7.4. For the purposes of illustation, we carry out one step of the induction in this

section.

We apply Proposition 7.3 with δs(0) = C1 (equivalently, κs(0) = C1ε) for all

s ≥ 1. Defining the corresponding arc σ(0), we obtain for k ≥ 1,

(7.17) E[#σ(0) | E ′
k]≤C2

k+1

∑
d=0

22dπ3(2
d)(2−η(ε)d +C1ε

d1

∑
s=1

2−η(ε)(d−s)+κd1
(0)).

We use this last expression to obtain an improvement on (7.16) under the assump-

tion

(7.18) k > s1 = 3m.

The quantity (7.17) is bounded by

C2

k+1

∑
d=0

22dπ3(2
d)2−η(ε)d +C2C1ε

k+1

∑
d=0

22dπ3(2
d)2η(ε) εMc∗

2η(ε)−1
(7.19)

+C2

k+1

∑
d=0

22dπ3(2
d)κd1

(0).(7.20)

By definition of C3 (see (7.15)), the first term in (7.19) is bounded by

(7.21) C2

k+1

∑
d=0

22dπ3(2
d)2−η(ε)d ≤C2C322k2−η(ε)kπ3(2

k).

Using (7.14) and (7.15), the second term in (7.19) is bounded by

(7.22) 2C1C2C3ε322kπ3(2
k).

Similarly, for (7.20) we have the upper bound

C2

m

∑
d=0

22dπ3(2
d)+C2

k+1

∑
d=m+1

C1ε22dπ3(2
k)≤C2C322kπ3(2

k)
[
2−(k−m)(2−β )+C1ε

]

≤ 2C1C2C3ε22kπ3(2
k).

(7.23)

In the second inequality we have assumed that k ≥ s1 = 3m (see (7.18)) and taken

ε sufficiently small (depending only on β ).

Adding these three bounds, E[#σ(0) | E ′
k] is bounded by

(7.24) C2C322kπ3(2
k)(2−η(ε)k +2C1ε3 +2C1ε).



52 M. DAMRON, J. HANSON, P. SOSOE

The quantity (7.24) is bounded by

2C2C3ε1/222kπ3(2
k),

if ε is small (depending on C1) and (7.18) holds, since then 2−η(ε)k ≤ ε1/2. Thus,

E[#σ(0) | E ′
k]≤ 4C2C3ε1/2 ·22kπ3(2

k)

for k satisfying (7.18).

This completes our bounding of the right side of the main inequality in Propo-

sition 7.3. In summary, we now have E[#sr | E ′
r]≤ δr(1)2

2rπ3(2
r), with

(7.25) δr(1) =

{
C1, r ≤ s1,

4C2C3ε1/2, r > s1.

We may now iterate Proposition 7.3 for further generations to obtain an improved

bound. We formulate a general inductive result in the next section.

7.4 General case

The following proposition formalizes the inductive step, showing that our esti-

mates on #sk can be further improved.

Proposition 7.4. Recall the definition of sl = 3ml from (7.10). Assume that

(7.26) E[#sr | E ′
r]≤ δr(L)2

2rπ3(2
r),

holds for the choice of parameters

(7.27) δr(L) =





C1 if r ≤ s1

(4C2C3)
lε l/2 if sl < r ≤ sl+1, l = 1, . . . ,L−1,

(4C2C3)
LεL/2 if r > sL.

Then, (7.26) also holds for r ≥ sL+1 and δr(L) replaced by

(7.28) δr(L+1) = (4C2C3)
L+1ε(L+1)/2.

Proof. By (7.25), we may assume L ≥ 1 and r = k ≥ sL+1 = 3m(L+1). Start from

an upper bound for the main inequality of Proposition 7.3:

E[#σ(L) | E ′
k]≤ C2

k+1

∑
d=0

22dπ3(2
d)2−η(ε)d×

(7.29)

( 3m

∑
s=0

2η(ε)s + ε
L

∑
l=1

sl∧d1

∑
s=(sl−1+1)∧d1

2η(ε)s(4C2C3ε1/2)l−1 + ε(4C2C3ε1/2)L
d1

∑
s>sL

2η(ε)s

(7.30)

+C2 ∑
d≤m

22dπ3(2
d)+C2

k+1

∑
d>m

22dπ3(2
d) ·κd1

(L).

(7.31)



STRICT INEQUALITY FOR CHEMICAL DISTANCE 53

The final sum in (7.30) is zero if sL ≥ d1. The term (7.31) corresponds to the

κd1(i) term in (7.5). The term (7.30) corresponds to 2−η(ε)d plus the term over sizes

1 ≤ s < d1 in (7.5). Sizes 0 ≤ s ≤ s1 are bounded by the first term. Other sizes

are split over ranges of (sl−1,sl] up to d1 in the second term of (7.30) and sizes

0 ≤ s ≤ s1 are double counted from the previous term.

The term (7.31)

The term (7.31) is bounded (since C1 ≥ 1) by

C2 ∑
d≤m

22dπ3(2
d)+C1C2ε

L

∑
l=1

(4C2C3ε1/2)l−1
3ml+m

∑
d=3m(l−1)+m+1

22dπ3(2
d)(7.32)

+εC2(4C2C3)
LεL/2

k+1

∑
d:d1>sL

22dπ3(2
d).

By (7.15), the second sum in (7.32) is bounded by C1C2ε times

(7.33)
L

∑
l=1

(4C2C3ε1/2)l−1C322(3ml+m)π3(2
3ml+m).

Using (3.1), (7.33) is no greater than

(7.34) C5C3(4C2C3ε1/2)−123βmL+2mπ3(2
3mL+m)

L

∑
l=1

2(2−β )3ml2l log4C2C3ε1/2

.

The sum in (7.34) is bounded by 2(2−β )3mL(4C2C3ε1/2)L times

4C2C3ε1/2 ·2(2−β )3m

4C2C3ε1/2 ·2(2−β )3m −1
≤ 2,

if m ≥ 1
6

1
2−β log 1

ε . This is true for ε small enough (depending on β ). Thus using

(3.1), (7.34) is bounded by

(7.35) 2 ·C2
5C322(β−2)m22·3m(L+1)π3(2

3m(L+1))(4C2C3ε1/2)L−1.

Recalling the extra factors C1C2 and ε , we find from (7.32) and (7.35) that

(7.31) is bounded by

C2C322mπ3(2
m)

+ 2C1C2
5(4C2C3ε1/2)Lε1/222(β−2)m22·3m(L+1)π3(2

3m(L+1))

+ εC2C3(4C2C3)
LεL/222kπ3(2

k).

(7.36)

We compare the first two terms in (7.36) to the third using (3.1). We have

22kπ3(2
k)22·(m−k) π3(2

m)

π3(2k)
≤C522kπ3(2

k)2(2−β )(m−k)

≤C522kπ3(2
k)2m−k.(7.37)
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In the second step we have used β < 1 and k ≥ sL +m. Then if ε is small enough

(depending on C5), (7.37) is bounded by

(7.38) C522kπ3(2
k)2−3mL ≤C522kπ3(2

k)ε10L ≤ 22kπ3(2
k)ε9L.

For the second term in (7.36), we find (using β < 1 and k ≥ sL+1) for ε small

(depending on β ):

(7.39) 22(β−2)m22·3m(L+1)π3(2
3m(L+1))≤C5ε1022kπ3(2

k).

Putting (7.38) and (7.39) into (7.36), we find that (7.31) is bounded by

(7.40) ε(4C2C3ε1/2)L22kπ3(2
k)(C2C3 +2C1C3

5ε19/2)+C2C3ε9L22kπ3(2
k),

when k ≥ sL+1 = sL +3m.

Term (7.30): case sL ≤ d1

For (7.30), we distinguish the cases when sL ≤ d1 and sL > d1. In the first case,

the term in question is,

(7.41)
3m

∑
s=0

2η(ε)s + ε
L

∑
l=1

sl

∑
s=sl−1+1

2η(ε)s(4C2C3ε1/2)l−1 + ε(4C2C3ε1/2)L
d1

∑
s>sL

2η(ε)s.

By a summation like the one leading to (7.35), the middle term in (7.41) is

bounded by

(7.42) 4ε · (4C2C3ε1/2)−1θ(ε)2η(ε)d1(4C2C3ε1/2)L ≤ 2η(ε)dε2(4C2C3ε1/2)L.

The first and third terms in (7.41) are bounded, respectively, by

θ(ε)23mη(ε)

and

(4C2C3ε1/2)Lεθ(ε)2η(ε)d1 .

Multiplying these bounds by 2−η(ε)d , and using (7.11) and (7.14) we find an esti-

mate of

(7.43) ε · εL + ε2(4C2C3ε1/2)L

if L ≥ 1 and d1 ≥ sL. Here we have taken ε small depending on C2 and C3.

Using (7.43), (7.42) and performing the sum over d, we find that the contribu-

tion to (7.30) from d1 ≥ sL is

(7.44) C2C3ε2(4C2C3ε1/2)L22kπ3(2
k)+ εC2C3εL22kπ3(2

k).
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Term (7.30): case sL > d1.

We turn to the case sL > d1. We let

ld = max{l : sl ≤ d1}

= ⌊ d

3m
− 1

3
⌋.

When d1 < sL, the inner sum in (7.30) is

(7.45)
3m

∑
s=0

2η(ε)s + ε
ld

∑
l=1

sl

∑
s=sl−1+1

2η(ε)s(4C2C3ε1/2)l−1 + ε
d1

∑
s=sld

+1

2η(ε)s(4C2C3ε1/2)ld−1.

(If ld ≤ 0, the second and third terms are zero.) As in the case sL ≤ d1, the first sum-

mand in (7.45) is bounded by θ(ε)23mη(ε). Multiplying this by C222dπ3(2
d)2−η(ε)d

and summing over d from 0 to k+1, we find a bound of

(7.46) C2C322kπ3(2
k)ε16L,

for k ≥ sL+1.

Using c∗3M log 1
ε ld ≤ η(ε)(d−m) and performing a dyadic summation similar

to the one leading to (7.35), the second and third terms in (7.45) are seen to give a

contribution bounded by

(7.47) 3εθ(ε)(4C2C3ε1/2)−12η(ε)(d−m)2ld log4C2C3ε1/2

.

Multiplying (7.47) by C222dπ3(2
d)2−η(ε)d , and adding (7.46), we find that the

contribution to (7.30) from sL > d1 is bounded by

(7.48)

C2C322kπ3(2
k)ε16L +3C2(4C2C3ε1/2)−1θ(ε)εc∗Mε

sL+m

∑
d=m

22dπ3(2
d)2ld log4C2C3ε1/2

.

Note that if

sl−1 < d ≤ sl,

then l −2 ≤ ld ≤ l −1. The sum in (7.48) is bounded by

sL+m

∑
d=m

22dπ3(2
d)2ld log4C2C3ε1/2

≤2C5C322·3mLπ3(2
3mL)(4C2C3ε1/2)L−2 +C3(4C2C3ε1/2)L−122(sL+m)π3(2

sL+m).

Here we have performed a summation as in (7.34). By (7.14), the pre-factor in

front of the sum in (7.48) is bounded by 4ε2 (if ε is small depending on C2), so we

find an estimate for the second term of (7.48) of

2C522·3mLεπ3(2
3mL)(4C2C3ε1/2)L + ε3/2(4C2C3ε1/2)L22(sL+m)π3(2

sL+m).

Returning to (7.48), we find that the contribution to (7.30) from d such that d1 ≤ sL

is bounded by

(7.49) C2C322kπ3(2
k)ε16L +22(3mL+m)π3(2

3mL+m)(4C2C3ε1/2)L(2C2
5ε2 + ε3/2)).
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Using (3.1), we have

22(3mL+m)π3(2
3mL+m)≤ ε1022kπ3(2

k),

when k ≥ sL +3m and ε is small. Putting this into (7.49), we find a bound of

(7.50) ε(4C2C3ε1/2)L22kπ3(2
k),

k ≥ sL +3m.

Reckoning

Combining (7.40), (7.44) and (7.50), we find for ε small enough,

(7.51) E[#σ(L) | E ′
k]≤ ε(4C2C3)

L+1ε(L−1)/222kπ3(2
k),

for k ≥ sL +3m = sL+1, from which we obtain (7.28) for k ≥ sL+1. �

8 Proof of Theorem 1.1

The proof of the main theorem uses a similar but simpler construction to that

which appeared in Section 7.1, and follows that of the main derivation of [9]. For

this reason, we omit some details.

Using (3.1), we first choose δ > 0 small enough so that for n large, one has

(8.1) n1+2δ ≤ n2π3(n),

and define the truncated box

B̂(n) = B(n−nδ ).

This box is chosen so that the total number of edges contained in B(n) \ B̂(n) is

at most Cn−δ n2π3(n), and so this region does not significantly contribute to the

volume of the lowest crossing ln. Around each e ∈ B̂(n)∩ ln, we will search for

shortcuts between scales nδ/8 and nδ/4 which give a savings compared to ln of at

least n−c for some c > 0.

Precisely, from Proposition 7.1, we may choose a < 1 so that for ε sufficiently

small,

E[#s j | E ′
j]≤ a j22 jπ3(2

j) for all large n and j ∈
(

δ

8
logn,

δ

4
logn

)
.

From this we conclude that for c = δ
8

log 1
a
, one has

(8.2) E[#s j | E ′
j]≤ n−c22 jπ3(2

j) for all large n and j ∈
(

δ

8
logn,

δ

4
logn

)
.

We next place n−c-shortcuts (as in Definition 5.1) on the lowest crossing in a

maximal way, like before. That is, we select a collection of such shortcuts with

the property that their detoured paths do not share any vertices, and the total length

of their detoured paths is maximal. We then let σ be the open path consisting of

the union of these shortcuts and the portions of ln that are left undetoured. Just as

in Claim 1, any edge on the lowest crossing that is not covered by such a shortcut
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in σ has no such shortcut around it at all. Because the events Ek(e)∩ {e ∈ ln}
imply the existence of shortcuts (Proposition 5.4), one can again place (8.2) into

Propositions 5.6 and 6.2 (just as in (7.8)) to find η > 0 such that for all large n, and

uniformly in e ⊂ B̂(n), the probability that an edge e of the lowest crossing is not

covered by a detour in σ is at most

P(there is no n−c-shortcut around e | e ∈ ln)≤ P

(
∩⌊ δ

4
logn⌋

j=⌈ δ
8

logn⌉E j(e,ε,n
−c)c | e ∈ ln

)

≤ 2
− ĉ δ

16
logn

log 1
ε ≤ n−η .(8.3)

Last, we write (τℓ) for the collection of detoured paths in ln and use (8.1) and

(8.3) to estimate the expected length of σ for n large as

E[#σ | Hn]≤Cn1+δ +n−c ∑
ℓ

E[#τℓ∩ B̂(n) | Hn]

+E[#{e ∈ ln ∩ B̂(n) : e has no n−c-shortcut} | Hn]

≤Cn1+δ +n−cE[#ln ∩ B̂(n) | Hn]+n−ηE[#ln ∩ B̂(n) | Hn]

≤C[n−δ +n−c +n−η ]n2π(n).

Because Sn ≤ #σ , this completes the proof of Theorem 1.1. �

Appendix: Topological considerations

In this section we prove that the event Ek(e,ε,δ ) implies the existence of κ-

shortcut around e, as stated in Proposition 5.4. The item numbers refer to the

definition of E ′
k in Section 5.1.

Proof of (5.23). We proceed by first establishing several topological facts. The

ultimate topological goal, from which the proof of the proposition will follow, is to

identify the vertices of NK from Proposition 5.2 as vertices of the lowest crossing

ln and to show that the open arc of item 9. in the definition of E ′
k is disjoint from ln

and connects to both five-arm points in the prescribed way.

Let C denote (a choice of) the closed dual circuit with two defects from item

15. above (chosen according to some deterministic, measurable rule). We let C1

denote the lower of the two closed arcs between the defects. The term “lower”

can be defined precisely as follows using (deterministic choices of) the open arms

from item 16. above. Consider the Jordan curve consisting of the concatenation of

the open arm from the left side of B(e,2k) to the left side of B(e,2K), the arc of

∂B(e,2k) between the endpoints of the two open arms and containing the top of

B(e,2k), the open arm from the right side of B(e,2k) to the right side of B(e,2K),
and the arc of ∂B(e,2K) between the endpoints of the two open arms and containing

the top of B(e,2K). C crosses this Jordan curve twice (at the defects described in

item 15.), and so we can unambiguously define C1 as the arc lying in the exterior

of the Jordan curve.
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Recall the characterization of the lowest crossing from Section 3.3. Recall the

notation Q′ for a dual version, with slightly altered dimensions, of a rectangle Q —

see the paragraph above (3.4).

Proposition A.1. On {e∈ ln}∩Ek(e,ε,δ ), the arc C1 has a closed dual connection

to the bottom side of B(n)′. Moreover, any closed dual path from the interior of C

to the bottom side of B(e,2K)∗ which touches ∂B(e,2K)∗ at exactly one dual vertex

must intersect C1, and any closed dual path from the interior of C to the bottom

side of B(n)′ which touches B(n)′ at exactly one dual vertex must intersect C1.

Proof. We prove the first of the two claims of the proposition. By (3.4), since

e ∈ ln, there must exist a closed dual arm from an endpoint of e∗ to the bottom side

of B(n)′. The claim will be proved once it is shown that this arm can be chosen

to touch C1. Consider the Jordan curve J consisting of the concatenation of the

paths in the itemized list below (in all cases, choices of representatives of each

open/closed crossing are made according to a deterministic and measurable rule):

• the closed dual path C1 traversed from its endpoint at the “right” defect

(the defect in [ 7
8
· 2K ,2K ]× [−2K

8
, 2K

8
]) to the “left” defect (the defect in

[−2K ,−7
8
·2K ]× [−2K

8
, 2K

8
]);

• the diagonal straight line segment of length 1/
√

2 beginning at the end-

point of C1 at the left defect and ending at the endpoint of the open edge

crossing the defect which lies in the interior of C;

• the concatenation of the two open arms from item 16. above with their

extensions to ⋆1 and ⋆2 in items 3. (e) and 4. (c), further concatenated with

the open arc from item 9. above;

• the diagonal straight line segment of length 1/
√

2 beginning at the end-

point of the open edge crossing the right defect of C which lies in the

interior of C and ending at the endpoint of C1 at the right defect.

Since e is in the interior of J and ∂B(n)′ is in the exterior of J, this closed dual arm

must cross J. It cannot cross any of the open edges of J, nor can it cross the relative

interior of either of the diagonal straight line segments. Therefore, it must intersect

C1. We have shown the first claim made in the statement of the proposition.

The claim in the statement of the proposition involving dual paths to the bottom

of B(n)′ is proved in essentially the same way, replacing the role of e in the above

argument with the initial vertex of the dual path. In order to run the argument as

above, one need only show that the initial vertex of the dual path must be in the

interior of J.

If this dual vertex did not lie in the interior of J, it would have to lie in the inter-

section of the interior of C with the exterior of J. An easy Jordan curve argument

shows that this is impossible. Indeed, recall that since e ∈ ln, the two defects at

the endpoints of C1 have open arms to the left and right side of B(n). Since C1 has

a closed arm to the bottom side of B(n)′, the open arm from the left defect must

go to the left side of B(n), and similarly with the right defect. Defining a Jordan
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curve using these open arms, the open portions of J, and the appropriate portions

of the sides and top segment of ∂B(n), one sees that any closed dual path starting

in (intC)∩ ext(J) and touching the bottom of B(n)′ must cross this Jordan curve,

an impossibility.

The proof of the remaining claim is quite similar; we describe only the essen-

tial changes to be made. Instead of J, we consider a Jordan curve J′ consisting

of C1, the portions of the open arms from item 16. above from the defects of C

to ∂B(e,2K) (along with appropriate diagonal line segments to connect with C),

and the arc of ∂B(e,2K) connecting the endpoints of the open arms and contain-

ing the bottom side of ∂B(e,2K). Let γ be a closed dual arc from the bottom of

∂B(e,2K)∗ (in particular, the exterior of J′) to the interior of C and follow γ starting

at ∂B(e,2K)∗. Then γ must cross J′, and the first intersection happens no sooner

than the far endpoint of its first dual edge, at which point γ has already entered

the interior of J′. If this crossing happened via γ crossing a primal edge between

vertices of ∂B(e,2K), then γ would intersect ∂B(e,2K)∗ again, a contradiction. �

A direct consequence is that all the edges counted in NK lie on ln.

Corollary A.2. On the event {e ∈ ln}∩Ek(e,ε,δ ), consider the open edges in R

connected to the open paths from item 13. by two vertex-disjoint open paths inside

R which moreover are connected inside R by a dual closed path to the dual path in

item 14. In other words, these are the edges counted in NK from Proposition 3.3.

Each such open edge is an edge of ln, and the segment of ln passing through any

such edge does so between passing through the five-arm point ⋆1 (taking the edge

{⋆1,⋆1 + e1}) and the five-arm point ⋆2 (taking the edge {⋆2,⋆2 − e1}).

Proof. The dual crossing defined in item 14. touches the bottom of B(e,2K) by

definition. If f is an edge as in the statement of the corollary, then this implies f ∗

has a closed dual arm to the bottom of B(e,2K). Moreover, f is in the interior of

C by construction. Thus, by Proposition A.1, f ∗ has a closed dual arm to C1 and

C1 has a closed dual arm to the bottom of B(n)′; in particular, f ∗ has a closed dual

arm to the bottom of B(n)′.
The fact that f is an edge of ln will follow via (3.4) once we show that the end-

points of f have disjoint open arms to the sides of ∂B(n). Note that the endpoints

of f have disjoint open arms to the defects in C, obtained by following their disjoint

connections to the open paths in item 13., then following these paths to ⋆1 and ⋆2,

then following the open paths from ⋆1 and ⋆2 to the paths from item 16. above and

then these paths to the defects in C.

The remaining portions of the open arms from f are furnished by segments of

open arms from e. Since e ∈ ln, it must have two disjoint open arms to the left and

right side of ∂B(n). Since e is in the interior of C, these arms must cross C; these

crossings must occur at the two defects. Thus, we can use the portions of these

arms after the defects on C to complete the disjoint open arms from f to the left

and right sides of B(n).
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We now show that any pair of disjoint open arms from f to ∂B(n) must pass

through ⋆1 and ⋆2 (one arm through each five-arm point). By construction, f is

in the interior of another closed dual circuit with two defects (lying entirely in the

interior of C). This dual circuit consists of the shield arc from item 8. above and

the dual closed paths from items 10. and 11., corresponding to the union of the red

dashed path from Figure 5.4 and the green dashed path from Figure 5.4. (To see

that f is in the interior, note it is easy to construct a path from f to the boundary

of D1 from item 10. that passes through this circuit only once, then to extend this

path to infinity without touching the circuit again.) Again, by planar duality, the

crossings must occur at the defects — in other words, at the five-arm points ⋆1 and

⋆2.

We now explain why the lowest crossing uses the claimed edges at the two

five-arm points; for brevity, we explain only the case of ⋆2. By duality and the

presence of the closed dual paths from ⋆2, the segment of the lowest crossing from

the right defect in the closed dual circuit of item 5. above must pass through either

{⋆2 − e1,⋆2} or {⋆2 − e2,⋆2}. Since the latter is closed (by the definition of a

five-arm point), the lowest crossing must pass through the former. �

It remains to use the above results to prove Proposition 5.4; we will show that

sk ∈ S (e,ε · δ ). Since sk was defined to be the shortest open crossing between

⋆1 and ⋆2 disjoint (except for the vertices ⋆1 and ⋆2) from the lowest crossing of

B(n), by the characterization of the lowest crossing in Section 3.3 it must avoid

the edges {⋆1,⋆1 + e1}, {⋆1,⋆1 − e1}, {⋆2,⋆2 + e1}, and {⋆2,⋆2 + e2} (which lie

on the lowest crossing). Since {⋆i,⋆i − e2} is closed for i = 1, 2, the path sk must

pass through {⋆i,⋆i + e2}. This establishes item 2. of the definition of κ-shortcuts

(Definition 5.1). Item 3. of that definition follows from the assumed disjointness

of ln and sk and the fact that ln passes through both ⋆1 and ⋆2 exactly once (and e

is on the segment of ln between these points).

To see that item 1. of Definition 5.1 holds, note that we can construct a curve

starting at ⋆2 + e2, passing through ln once at the edge {⋆2,⋆2 + e2}, and (after

taking a diagonal line segment to the appropriate dual neighbor of ⋆2) following the

closed dual arm from ⋆2 to C1, and then a dual path onward to the bottom of B(n)′

(by Proposition A.1). This crosses ln exactly once, so ⋆2 + e2 lies in B(n)\B(ln).
The fact that sk is disjoint from ln except at the five-arm points now gives that the

midpoint of every edge of sk is in B(n)\B(ln), which is item 1. of the definition.

Item 4. of Definition 5.1 is immediate from the construction: the required dual

path is furnished by using the closed dual paths from ⋆1 and ⋆2 as extended in items

10. and 11. above (see the red path from Figure 5.4). �
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